cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116906 Sum of squares of divisors of n!.

Original entry on oeis.org

1, 1, 5, 50, 850, 22100, 806806, 40340300, 2584263500, 209609328500, 20993420690550, 2561197324247100, 368819285671473000, 62699278564150410000, 12294076739210974071000, 2766341857504878226501200
Offset: 0

Views

Author

Jonathan Vos Post, Mar 15 2006

Keywords

Comments

See also A062569 sigma_1(n!).

Examples

			a(0) = 1 because only 1 divides 0! = 1.
a(1) = 1 because only 1 divides 1! = 1.
a(2) = 5 because both 1 and 2 divide 2! = 2 and 1^2 + 2^2 = 5.
a(3) = 50 because 1, 2, 3, 6 divide 3! = 6 and 1^2 + 2^2 + 3^2 + 6^2 = 50.
a(4) = 850 because 1, 2, 3, 4, 6, 8, 12, 24 divide 4! = 24 and 1^2 + 2^2 + 3^2 + 4^2 + 6^2 + 8^2 + 12^2 + 24^2 = 850.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[2, n!]; Array[a, 16, 0] (* Amiram Eldar, Aug 01 2019 *)
  • Sage
    [sigma(factorial(n),2)for n in range(0,16)] # Zerinvary Lajos, Jun 13 2009

Formula

a(n) = A001157(A000142(n)).
a(n) = Sum_{d|n!} d^2.
a(n) = sigma_2(n!).
a(n) = zeta(2) * n!^2 * (1 + O(log(n)/n)) (De Koninck and Verreault, 2024. p. 54, Theorem 4.5). - Amiram Eldar, Dec 10 2024