A116928 Number of 1's in all self-conjugate partitions of n.
1, 0, 1, 0, 2, 1, 3, 2, 4, 4, 6, 6, 8, 9, 11, 12, 15, 17, 20, 22, 26, 29, 34, 37, 43, 48, 55, 60, 69, 76, 86, 94, 106, 117, 131, 143, 160, 176, 195, 213, 236, 259, 285, 311, 342, 374, 410, 446, 488, 533, 581, 631, 688, 748, 813, 881, 957, 1038, 1125, 1216, 1317, 1425
Offset: 1
Keywords
Examples
a(12)=6 because the self-conjugate partitions of 12 are [6,2,1,1,1,1],[5,3,2,1,1] and [4,4,2,2], containing a total of six 1's.
Crossrefs
Cf. A116927.
Programs
-
Maple
f:=x+sum(x^(k^2+2)/(1-x^2)/product(1-x^(2*j),j=1..k),k=1..10): fser:=series(f,x=0,70): seq(coeff(fser,x^n),n=1..67);
Formula
G.f.=x+sum(x^(k^2+2)/(1-x^2)/product(1-x^(2j), j=1..k), k=1..infinity).
a(n) = A096911(n)-(1+(-1)^n)/2, m>1. - Vladeta Jovovic, Feb 27 2006
Comments