cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116930 Sum of parts, counted without multiplicities, in all partitions of n into odd parts.

Original entry on oeis.org

1, 1, 4, 5, 10, 14, 22, 31, 44, 61, 82, 111, 145, 191, 245, 316, 399, 506, 631, 788, 973, 1200, 1468, 1792, 2174, 2630, 3167, 3802, 4547, 5422, 6445, 7638, 9029, 10642, 12515, 14679, 17181, 20061, 23379, 27185, 31554, 36551, 42268, 48787, 56224, 64681, 74300
Offset: 1

Views

Author

Emeric Deutsch, Feb 27 2006

Keywords

Examples

			a(5) = 10 because the partitions of 5 into odd parts are [5], [3,1,1] and [1,1,1,1,1], with sum of the parts, counted without multiplicities 5 + (3+1) + 1 = 10.
a(5) = 10: There are three partitions of 5 into distinct parts, namely [5], [4,1], and [3,2]. We have phi(5) + phi(4) + phi(1) + phi(3) + phi(2) = 4 + 2 + 1 + 2 + 1 = 10. - _Peter Bala_, Dec 26 2013
		

Crossrefs

Programs

  • Maple
    f:=x*(1+x^2)/(1-x^2)^2/product(1-x^(2*j-1),j=1..40): fser:=series(f,x=0,55): seq(coeff(fser,x^n),n=1..49);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(n>i*(i+1)/2, 0, b(n, i-1)+(p-> p+[0, p[1]
           *numtheory[phi](i)])(b(n-i, min(n-i, i-1)))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=1..50);  # Alois P. Heinz, Aug 15 2021
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0},
         If[n > i (i + 1)/2, {0, 0}, b[n, i - 1] +
         With[{p = b[n - i, Min[n-i, i-1]]}, p + {0, p[[1]]*EulerPhi[i]}]]];
    a[n_] := b[n, n][[2]];
    Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Mar 13 2022, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n} k * A116929(n,k).
G.f.: x(1+x^2)/[(1-x^2)^2*product(1-x^(2*j-1),j=1..infinity)].
a(n) = Sum_{parts k in all partitions of n into distinct parts} phi(k), where phi(k) is the Euler totient function (see A000010). An example is given below. - Peter Bala, Dec 26 2013
a(n) ~ 3^(3/4) * exp(Pi*sqrt(n/3)) * n^(1/4) / (2*Pi^2). - Vaclav Kotesovec, Jun 11 2025