cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116945 Numbers in both A002731(n) and A002731(A002731(n)).

Original entry on oeis.org

3, 11, 19, 59, 69, 221, 271, 349, 371, 391, 441, 451, 521, 529, 649, 779, 869, 921, 929, 951, 1001, 1031, 1051, 1171, 1359, 1391, 1421, 1689, 1701, 2199, 2321, 2349, 2381, 2671, 2711, 2719, 2821, 2901, 3001, 3241, 3341, 3399, 3441, 3499, 3691, 4299
Offset: 1

Views

Author

Jonathan Vos Post, Mar 25 2006

Keywords

Comments

Subset of A002731. A002731(n) = 2*A027861(n-1)+1. A027862 gives primes, A091277 gives prime index.

Examples

			a(1) = 3 because (3^2 + 1)/2 = 5 is prime and (5^2 + 1)/2 = 13 is prime.
a(2) = 11 because (11^2 + 1)/2 = 61 is prime and (61^2 + 1)/2 = 1861 is prime.
a(3) = 19 because (19^2 + 1)/2 = 181 is prime and (181^2 + 1)/2 = 16381 is prime.
a(4) = 59 because (59^2 + 1)/2 = 1741 is prime and (1741^2 + 1)/2 = 1515541 is prime.
a(5) = 69 because (69^2 + 1)/2 = 2381 is prime and (2381^2 + 1)/2 = 2834581 is prime. Further, (2834581^2+1)/2 = 4017424722781 is prime, which suggests another sequences one level of recursion deeper.
a(6) = 221 because (221^2 + 1)/2 = 24421 is prime and (24421^2 + 1)/2 = 298192621 is prime.
		

References

  • L. Euler, De numeris primis valde magnis (E283), reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 3, p. 24.

Crossrefs

Formula

n such that (n^2 + 1)/2 is prime and (((n^2 + 1)/2)^2 + 1)/2 is prime.

Extensions

More terms from Zak Seidov, Apr 03 2011