cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116994 Prime partial sums of triangular numbers with prime indices.

Original entry on oeis.org

3, 1759, 3323, 469303, 605113, 641969, 1110587, 1426669, 11148289, 18352349, 20473721, 21820391, 24710753, 30048589, 36690923, 40785301, 97060681, 155135369, 160593239, 168132247, 361391623, 377965069, 416572171, 645803201
Offset: 1

Views

Author

Jonathan Vos Post, Apr 02 2006

Keywords

Examples

			a(1) = Sum_{i=1..1} prime(i)*(prime(i)+1)/2 = T(2) = 3.
a(2) = Sum_{i=1..11} prime(i)*(prime(i)+1)/2 = T(2)+T(3)+T(5)+T(7)+T(11)+T(13)+T(17)+T(19)+T(23)+T(29)+T(31) = 1759.
a(3) = Sum_{i=1..13} prime(i)*(prime(i)+1)/2 = 3323.
a(4) = Sum_{i=1..53} prime(i)*(prime(i)+1)/2 = T(2) + ... + T(241) = 469303.
a(5) = Sum_{i=1..57} prime(i)*(prime(i)+1)/2 = T(2) + ... + T(269) = 605113.
a(6) = Sum_{i=1..58} prime(i)*(prime(i)+1)/2 = T(2) + ... + T(271) = 641969.
a(7) = Sum_{i=1..68} prime(i)*(prime(i)+1)/2 = T(2) + ... + T(337) = 1110587.
		

Crossrefs

Programs

  • Maple
    T:=n->n*(n+1)/2: a:=proc(n): if isprime(sum(T(ithprime(j)),j=1..n))=true then sum(T(ithprime(j)),j=1..n) else fi end: seq(a(n),n=1..500); # Emeric Deutsch, Apr 06 2006
  • Mathematica
    Select[Accumulate[Table[(n(n+1))/2,{n,Prime[Range[500]]}]],PrimeQ] (* Harvey P. Dale, Jan 25 2015 *)

Formula

A000040 INTERSECTION A085739. Primes in A085739.

Extensions

More terms from Emeric Deutsch, Apr 06 2006