A117048 Prime numbers that are expressible as the sum of two positive triangular numbers.
2, 7, 11, 13, 29, 31, 37, 43, 61, 67, 73, 79, 83, 97, 101, 127, 137, 139, 151, 157, 163, 181, 191, 193, 199, 211, 227, 241, 263, 277, 281, 307, 331, 353, 367, 373, 379, 389, 409, 421, 433, 443, 461, 463, 487, 499, 541, 571, 577, 587, 601, 619, 631, 659, 661
Offset: 1
Examples
2 = 1 + 1 7 = 1 + 6 11 = 1 + 10 13 = 10 + 3, etc.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
tri = Table[n (n + 1)/2, {n, 40}]; Select[Union[Flatten[Outer[Plus, tri, tri]]], # <= tri[[-1]]+1 && PrimeQ[#] &] (* T. D. Noe, Apr 07 2011 *)
-
PARI
is(n)=for(k=sqrtint(4*n+1)\2+1,(sqrtint(8*n+1)-1)\2, if(ispolygonal(n-k*(k+1)/2,3), return(n>3 && isprime(n)))); n==2 \\ Charles R Greathouse IV, Nov 07 2014
Comments