cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A249622 a(n) = number of ways to express A117048(n) as the sum of two positive triangular numbers.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 4, 1, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 3, 1, 2, 1, 2, 1, 1, 6, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Zak Seidov, Nov 03 2014

Keywords

Examples

			a(6) = 2 because A117048(6) = 31 and 31 = 3 + 28 = 10 + 21 (first case of two-way expression).
a(22) = 3 because A117048(22) = 181 and 181 = A000217(i) + A000217(k), for {i,k} = {{4, 18}, {7, 17}, {9, 16}} (first case of three-way expression): 181 = 10 + 171 = 28 + 153 = 45 + 136.
		

Crossrefs

A117112 Primes expressible as the sum of two triangular numbers (including zero).

Original entry on oeis.org

2, 3, 7, 11, 13, 29, 31, 37, 43, 61, 67, 73, 79, 83, 97, 101, 127, 137, 139, 151, 157, 163, 181, 191, 193, 199, 211, 227, 241, 263, 277, 281, 307, 331, 353, 367, 373, 379, 389, 409, 421, 433, 443, 461, 463, 487, 499, 541, 571, 577, 587, 601, 619, 631, 659, 661
Offset: 1

Views

Author

Greg Huber, Apr 18 2006

Keywords

Comments

See A117048 for the primes that are the sum of two positive triangular numbers. The only difference is that the prime 3 occurs here.

Examples

			2 = 1 + 1
3 = 0 + 3
7 = 1 + 6
and so on.
		

Crossrefs

Programs

  • Mathematica
    tri = Table[n (n + 1)/2, {n, 0, 40}]; Select[Union[Flatten[Outer[Plus, tri, tri]]], # <= tri[[-1]]+1 && PrimeQ[#] &] (* T. D. Noe, Apr 07 2011 *)
    Select[Total/@Tuples[Accumulate[Range[0,40]],2],PrimeQ]//Union (* Harvey P. Dale, Apr 21 2019 *)

Formula

A000040 intersect A020756. - Jonathan Vos Post, Apr 17 2006

A117314 Twin-prime pairs expressible as the sum of two triangular numbers.

Original entry on oeis.org

11, 13, 29, 31, 137, 139, 191, 193, 461, 463, 659, 661, 821, 823, 1091, 1093, 1721, 1723, 2027, 2029, 2081, 2083, 2711, 2713, 3359, 3361, 3539, 3541, 3917, 3919, 6131, 6133, 6761, 6763, 7589, 7591, 7877, 7879, 7949, 7951, 8219, 8221, 9461, 9463, 9857
Offset: 1

Views

Author

Greg Huber, Apr 24 2006

Keywords

Examples

			a(1) = 11 = 1 + 10; a(2) = 13 = 3 + 10.
		

Crossrefs

Programs

  • Mathematica
    s = Select[Union@ Flatten@ Table[i(i + 1)/2 + j(j + 1)/2, {i, 200}, {j, 0, i}], PrimeQ@ # &]; t = Select[Range@Length@s - 1, s[[ # ]] + 2 == s[[ # + 1]] &]; Sort@Join[s[[t]], s[[t + 1]]] (* Robert G. Wilson v, Apr 27 2006 *)

Extensions

More terms from Robert G. Wilson v, Apr 27 2006

A118638 Lesser of a twin-prime pair where both are expressible as the sum of two triangular numbers.

Original entry on oeis.org

11, 29, 137, 191, 461, 659, 821, 1091, 1721, 2027, 2081, 2711, 3359, 3539, 3917, 6131, 6761, 7589, 7877, 7949, 8219, 9461, 9857, 11351, 12107, 12377, 13691, 13997, 14447, 16139, 16229, 17291, 17417, 17579, 18911, 19469, 19541, 19991, 20549, 20639, 20747, 20981
Offset: 1

Views

Author

Greg Huber, May 09 2006

Keywords

Comments

A bisection of A117314. Thought more interesting by Robert G. Wilson v.

Examples

			a(1) = 11 = 1 + 10;
a(2) = 29 = 1 + 28.
		

Crossrefs

Extensions

a(40) inserted by Amiram Eldar, Dec 27 2019

A117313 Average of twin-prime pairs for pairs that are expressible as the sum of two triangular numbers.

Original entry on oeis.org

12, 30, 138, 192, 462, 660, 822, 1092, 1722, 2028, 2082, 2712, 3360, 3540, 3918, 6132, 6762, 7590, 7878, 7950, 8220, 9462, 9858, 11352, 12108, 12378, 13692, 13998, 14448, 16140, 16230, 17292, 17418, 17580, 18912, 19470, 19542, 19992, 20550, 20748
Offset: 1

Views

Author

Greg Huber, Apr 24 2006

Keywords

Examples

			a(1) = 12 as witnessed by 11 = 1 + 10 and 13 = 3 + 10;
a(5) = 462 as witnessed by 461 = 55 + 406 and 463 = 28 + 435.
		

Crossrefs

Programs

  • Mathematica
    s = Select[Union@ Flatten@ Table[i(i + 1)/2 + j(j + 1)/2, {i, 200}, {j, 0, i}], PrimeQ@ # &]; t = Select[Range@ Length@s - 1, s[[ # ]] + 2 == s[[ # + 1]] &]; s[[t]] + 1 (* Robert G. Wilson v, Apr 27 2006 *)

Extensions

More terms from Robert G. Wilson v, Apr 27 2006

A119961 Semiprimes that are the sum of two triangular numbers.

Original entry on oeis.org

4, 6, 9, 10, 15, 21, 22, 25, 34, 38, 39, 46, 49, 51, 55, 57, 58, 65, 69, 87, 91, 93, 94, 106, 111, 115, 119, 121, 123, 133, 141, 142, 146, 159, 169, 177, 183, 202, 205, 213, 214, 218, 219, 226, 235, 237, 249, 253, 254, 259, 262, 265, 267, 274, 289, 291, 295
Offset: 1

Views

Author

Jonathan Vos Post, Aug 02 2006

Keywords

Comments

Semiprime analog of A117048 Prime numbers that are expressible as the sum of two triangular numbers.

Crossrefs

Programs

  • Mathematica
    With[{nn=60},Take[Union[Select[Total/@Tuples[Accumulate[Range[0,nn]],2],PrimeOmega[ #] ==2&]],nn]] (* Harvey P. Dale, Nov 04 2020 *)

Formula

A020756 intersection A001358.

Extensions

Missing a(2) and a(19)-a(53) from Giovanni Resta, Jun 13 2016
Showing 1-6 of 6 results.