cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A249736 Triangular numbers modulo 30.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 6, 15, 25, 6, 18, 1, 15, 0, 16, 3, 21, 10, 0, 21, 13, 6, 0, 25, 21, 18, 16, 15, 15, 16, 18, 21, 25, 0, 6, 13, 21, 0, 10, 21, 3, 16, 0, 15, 1, 18, 6, 25, 15, 6, 28, 21, 15, 10, 6, 3, 1, 0, 0, 1, 3, 6, 10, 15, 21, 28, 6, 15, 25, 6, 18, 1, 15, 0, 16, 3, 21, 10, 0, 21, 13, 6, 0
Offset: 0

Views

Author

Zak Seidov, Nov 04 2014

Keywords

Comments

The sequence is periodic with period 60.
Inside the cycle, the left-hand half is mirror of right-hand half:
{0, 1, 3, 6, 10, 15, 21, 28, 6, 15, 25, 6, 18, 1, 15, 0, 16, 3, 21, 10, 0, 21, 13, 6, 0, 25, 21, 18, 16, 15} = reverse(
{15, 16, 18, 21, 25, 0, 6, 13, 21, 0, 10, 21, 3, 16, 0, 15, 1, 18, 6, 25, 15, 6, 28, 21, 15, 10, 6, 3, 1, 0}).

Examples

			G.f. = x + 3*x^2 + 6*x^3 + 10*x^4 + 15*x^5 + 21*x^6 + 28*x^7 + 6*x^8 + ...
		

Crossrefs

Programs

Formula

a(n) = A000217(n) mod 30.
a(n) = a(-1-n) = a(n+60) for all n in Z. - Michael Somos, Nov 06 2014
0 = a(n) - a(n+15) + a(n+30) - a(n+45) for all n in Z. - Michael Somos, Nov 06 2014
b(n) = a(n) - a(n+2) - a(n+4) - a(n+6) for all n in Z where b(n) is either -22 or 8 depending on n mod 60. - Michael Somos, Nov 06 2014
Showing 1-1 of 1 results.