A117057 Palindromes which are divisible by the product of their digits.
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 111, 212, 1111, 2112, 4224, 11111, 11711, 13131, 21112, 21312, 31113, 42624, 111111, 211112, 234432, 1111111, 1113111, 2111112, 2112112, 2114112, 2118112, 11111111, 21111112, 21122112, 61111116, 111111111
Offset: 1
Examples
4224 is in the sequence because (1) it is a palindrome, (2) the product of its digits is 4*2*2*4=64 and 4224 is divisible by 64.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..221
Crossrefs
Cf. A002113.
Programs
-
Mathematica
fQ[n_] := Block[{id = IntegerDigits@n}, Reverse@id == id && Count[id, 0] == 0 && Mod[n, Times @@ id] == 0]; Do[ If[ fQ@n, Print@n], {n, 10^7}] (* Robert G. Wilson v *)
-
PARI
{m=120000000;for(n=1,m,k=n;rev=0;while(k>0,d=divrem(k,10);k=d[1];rev=10*rev+d[2]); if(n==rev,p=1;h=n;while(h>0,d=divrem(h,10);h=d[1];p=p*d[2]);if(p>0&&n%p==0,print1(n,","))))} \\ Klaus Brockhaus, Apr 17 2006
-
Python
from operator import mul from functools import reduce from gmpy2 import t_mod, mpz A117057 = sorted([mpz(n) for n in (str(x)+str(x)[::-1] for x in range(1,10**6)) if not (n.count('0') or t_mod(mpz(n), reduce(mul,(mpz(d) for d in n))))]+ [mpz(n) for n in (str(x)+str(x)[-2::-1] for x in range(10**6)) if not (n.count('0') or t_mod(mpz(n), reduce(mul,(mpz(d) for d in n))))]) # Chai Wah Wu, Aug 26 2014
Extensions
a(23) to a(36) from Klaus Brockhaus, Apr 17 2006
Comments