cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117057 Palindromes which are divisible by the product of their digits.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 111, 212, 1111, 2112, 4224, 11111, 11711, 13131, 21112, 21312, 31113, 42624, 111111, 211112, 234432, 1111111, 1113111, 2111112, 2112112, 2114112, 2118112, 11111111, 21111112, 21122112, 61111116, 111111111
Offset: 1

Views

Author

Luc Stevens (lms022(AT)yahoo.com), Apr 16 2006

Keywords

Comments

Are there infinitely many terms that do not contain a 1? - Derek Orr, Aug 26 2014

Examples

			4224 is in the sequence because (1) it is a palindrome, (2) the product of its digits is 4*2*2*4=64 and 4224 is divisible by 64.
		

Crossrefs

Cf. A002113.

Programs

  • Mathematica
    fQ[n_] := Block[{id = IntegerDigits@n}, Reverse@id == id && Count[id, 0] == 0 && Mod[n, Times @@ id] == 0]; Do[ If[ fQ@n, Print@n], {n, 10^7}] (* Robert G. Wilson v *)
  • PARI
    {m=120000000;for(n=1,m,k=n;rev=0;while(k>0,d=divrem(k,10);k=d[1];rev=10*rev+d[2]); if(n==rev,p=1;h=n;while(h>0,d=divrem(h,10);h=d[1];p=p*d[2]);if(p>0&&n%p==0,print1(n,","))))} \\ Klaus Brockhaus, Apr 17 2006
    
  • Python
    from operator import mul
    from functools import reduce
    from gmpy2 import t_mod, mpz
    A117057 = sorted([mpz(n) for n in (str(x)+str(x)[::-1] for x in range(1,10**6))
            if not (n.count('0') or t_mod(mpz(n), reduce(mul,(mpz(d) for d in n))))]+
            [mpz(n) for n in (str(x)+str(x)[-2::-1] for x in range(10**6))
            if not (n.count('0') or t_mod(mpz(n), reduce(mul,(mpz(d) for d in n))))])
    # Chai Wah Wu, Aug 26 2014

Extensions

a(23) to a(36) from Klaus Brockhaus, Apr 17 2006