cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117078 a(n) is the smallest k such that prime(n+1) = prime(n) + (prime(n) mod k), or 0 if no such k exists.

Original entry on oeis.org

0, 0, 3, 0, 3, 9, 3, 5, 17, 3, 25, 11, 3, 13, 41, 47, 3, 11, 7, 3, 67, 5, 7, 9, 31, 3, 9, 3, 5, 33, 41, 25, 3, 43, 3, 29, 151, 53, 7, 167, 3, 19, 3, 7, 3, 17, 199, 73, 3, 5, 227, 3, 11, 7, 251, 257, 3, 53, 7, 3, 13, 31, 101, 3, 103, 101, 13, 109, 3, 5, 347, 9, 19, 367, 5, 13, 127, 131, 131, 19, 3
Offset: 1

Views

Author

Rémi Eismann, Apr 18 2006, Dec 10 2006, Feb 14 2008

Keywords

Comments

There is a unique decomposition of the primes: provided the weight a(n) is > 0, we have prime(n) = weight * level + gap, or A000040(n)=a(n)*A117563(n)+A001223(n).
a(n) is the smallest divisor of A118534(n) greater than A001223(n) (gap).
a(n) == 0 (mod 2) only for n = {1, 2 or 4}. - Robert G. Wilson v, May 05 2006
a(n) = 0 only for primes 2, 3 and 7. Conjecture: 2, 3 and 7 are the only primes for which log(A000040(n)) < sqrt(A001223(n)).
a(n) > 0 if and only if 2*prime(n+1) < 3*prime(n). - Thomas Ordowski, Nov 25 2013

Examples

			For n = 1 we have prime(n) = 2, prime(n+1) = 3; there is no k such that 3 - 2 = 1 = (2 mod k), hence a(1) = 0.
For n = 3 we have prime(n) = 5, prime(n+1) = 7; 3 is the smallest k such that 7 - 5 = 2 = (5 mod k), hence a(3) = 3.
For n = 19 we have prime(n) = 67, prime(n+1) = 71; 7 is the smallest k such that 71 - 67 = 4 = (67 mod k), hence a(19) = 7.
		

Crossrefs

Cf. A074822 (k=5), A118534, A117563.

Programs

  • Mathematica
    f[n_] := Block[{a, p = Prime@n, np = Prime[n + 1]}, a = Min@ Select[ Divisors[2p - np], # > np - p &]; If[a == Infinity, 0, a]]; Array[f, 80] (* Robert G. Wilson v, May 08 2006 *)
  • PARI
    {m=78; for(n=1,m,p=prime(n);d=prime(n+1)-p; k=0; j=1; while(k==0&&j
    				

Extensions

Edited and corrected by Don Reble and Klaus Brockhaus, Apr 21 2006