A117078 a(n) is the smallest k such that prime(n+1) = prime(n) + (prime(n) mod k), or 0 if no such k exists.
0, 0, 3, 0, 3, 9, 3, 5, 17, 3, 25, 11, 3, 13, 41, 47, 3, 11, 7, 3, 67, 5, 7, 9, 31, 3, 9, 3, 5, 33, 41, 25, 3, 43, 3, 29, 151, 53, 7, 167, 3, 19, 3, 7, 3, 17, 199, 73, 3, 5, 227, 3, 11, 7, 251, 257, 3, 53, 7, 3, 13, 31, 101, 3, 103, 101, 13, 109, 3, 5, 347, 9, 19, 367, 5, 13, 127, 131, 131, 19, 3
Offset: 1
Keywords
Examples
For n = 1 we have prime(n) = 2, prime(n+1) = 3; there is no k such that 3 - 2 = 1 = (2 mod k), hence a(1) = 0. For n = 3 we have prime(n) = 5, prime(n+1) = 7; 3 is the smallest k such that 7 - 5 = 2 = (5 mod k), hence a(3) = 3. For n = 19 we have prime(n) = 67, prime(n+1) = 71; 7 is the smallest k such that 71 - 67 = 4 = (67 mod k), hence a(19) = 7.
Links
- Remi Eismann, Table of n, a(n) for n = 1..10000
- Rémi Eismann, Decomposition into weight * level + jump and application to a new classification of primes, arXiv:0711.0865 [math.NT], 2007-2010.
- Fabien Sibenaler, Program in assembly that gives the decomposition of a prime number [prime = weight * level + gap, or A000040(n) = A117078(n) * A117563(n) + A001223(n)]
Programs
-
Mathematica
f[n_] := Block[{a, p = Prime@n, np = Prime[n + 1]}, a = Min@ Select[ Divisors[2p - np], # > np - p &]; If[a == Infinity, 0, a]]; Array[f, 80] (* Robert G. Wilson v, May 08 2006 *)
-
PARI
{m=78; for(n=1,m,p=prime(n);d=prime(n+1)-p; k=0; j=1; while(k==0&&j
Extensions
Edited and corrected by Don Reble and Klaus Brockhaus, Apr 21 2006
Comments