A117086 Number of partitions of n such that the largest part is a multiple of the smallest part.
1, 2, 3, 5, 6, 11, 12, 20, 26, 37, 45, 71, 84, 117, 152, 203, 253, 342, 421, 556, 694, 884, 1096, 1409, 1729, 2168, 2672, 3327, 4061, 5039, 6114, 7514, 9110, 11098, 13400, 16275, 19537, 23575, 28245, 33929, 40465, 48424, 57552, 68569, 81296, 96449
Offset: 1
Examples
a(7)=12 because from the 15 (=A000041(7)) partitions of 7 only [5,2],[4,3] and [3,2,2] do not qualify.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
f:=add(add(x^((l+1)*k)/mul(1-x^i,i=k..l*k),k=1..51),l=0..51): s:=series(f,x,51):for m from 1 to 50 do c:=coeff(s,x,m): printf(`%d,`,c);od: # (Jovovic) - Emeric Deutsch, Apr 21 2006
-
Mathematica
Table[Count[IntegerPartitions[n],?(Divisible[First[#],Last[#]]&)], {n,50}] (* _Harvey P. Dale, Mar 04 2012 *)
Formula
G.f.: Sum_{L>=0} Sum_{k>=1} (x^((L+1)*k) / Product_{i=k..L*k} (1 - x^i)).
Extensions
More terms from Emeric Deutsch, Apr 21 2006
Comments