cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A118096 Number of partitions of n such that the largest part is twice the smallest part.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 3, 4, 6, 6, 6, 10, 9, 11, 13, 14, 15, 20, 18, 23, 25, 27, 27, 37, 35, 39, 43, 48, 49, 61, 57, 68, 72, 78, 81, 97, 95, 107, 114, 127, 128, 150, 148, 168, 179, 191, 198, 229, 230, 254, 266, 291, 300, 338, 344, 379, 398, 427, 444, 498, 505, 550, 580, 625
Offset: 1

Views

Author

Emeric Deutsch, Apr 12 2006

Keywords

Comments

Also number of partitions of n such that if the largest part occurs k times, then the number of parts is 2k. Example: a(8)=4 because we have [7,1], [6,2], [5,3] and [3,3,1,1].

Examples

			a(8)=4 because we have [4,2,2], [2,2,2,1,1], [2,2,1,1,1,1] and [2,1,1,1,1,1,1].
		

Crossrefs

Programs

  • Maple
    g:=sum(x^(3*k)/product(1-x^j,j=k..2*k),k=1..30): gser:=series(g,x=0,75): seq(coeff(gser,x,n),n=1..70);
    # second Maple program:
    b:= proc(n, i, t) option remember: `if`(n=0, 1, `if`(in, 0, b(n-i, i, t))))
        end:
    a:= n-> add(b(n-3*j, 2*j, j), j=1..n/3):
    seq(a(n), n=1..64);  # Alois P. Heinz, Sep 04 2017
  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; 2 Min[p] = = Max[p]], {n, 40}] (* Clark Kimberling, Feb 16 2014 *)
    (* Second program: *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < t, 0,
         b[n, i - 1, t] + If[i > n, 0, b[n - i, i, t]]]];
    a[n_] := Sum[b[n - 3j, 2j, j], {j, 1, n/3}];
    Array[a, 64] (* Jean-François Alcover, Jun 04 2021, after Alois P. Heinz *)
    (* Third program: *)
    nmax = 100; p = 1; s = 0; Do[p = Simplify[p*(1 - x^(2*k - 1))*(1 - x^(2*k))/(1 - x^k)]; p = Normal[p + O[x]^(nmax+1)]; s += x^(3*k)/(1 - x^k)/p;, {k, 1, nmax}]; Rest[CoefficientList[Series[s, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 16 2025 *)
  • PARI
    my(N=70, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(3*k)/prod(j=k, 2*k, 1-x^j)))) \\ Seiichi Manyama, May 14 2023

Formula

G.f.: Sum_{k>=1} x^(3*k)/Product_{j=k..2*k} (1-x^j).
a(n) ~ exp(Pi*sqrt(2*n/15)) / (5^(1/4)*sqrt(2*phi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 13 2025

A130689 Number of partitions of n such that every part divides the largest part; a(0) = 1.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 11, 16, 19, 26, 28, 41, 43, 56, 65, 82, 88, 115, 122, 155, 174, 209, 225, 283, 305, 363, 402, 477, 514, 622, 666, 783, 858, 990, 1078, 1268, 1362, 1561, 1708, 1958, 2111, 2433, 2613, 2976, 3247, 3652, 3938, 4482, 4821, 5422
Offset: 0

Views

Author

Vladeta Jovovic, Jul 01 2007

Keywords

Comments

First differs from A130714 at a(11) = 28, A130714(11) = 27. - Gus Wiseman, Apr 23 2021

Examples

			For n = 6 we have 10 such partitions: [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2], [1, 1, 2, 2], [2, 2, 2], [1, 1, 1, 3], [3, 3], [1, 1, 4], [2, 4], [1, 5], [6].
From _Gus Wiseman_, Apr 18 2021: (Start)
The a(1) = 1 through a(8) = 16 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (41)     (33)      (61)       (44)
             (111)  (31)    (221)    (42)      (331)      (62)
                    (211)   (311)    (51)      (421)      (71)
                    (1111)  (2111)   (222)     (511)      (422)
                            (11111)  (411)     (2221)     (611)
                                     (2211)    (4111)     (2222)
                                     (3111)    (22111)    (3311)
                                     (21111)   (31111)    (4211)
                                     (111111)  (211111)   (5111)
                                               (1111111)  (22211)
                                                          (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
(End)
		

Crossrefs

The dual version is A083710.
The case without 1's is A339619.
The Heinz numbers of these partitions are the complement of A343337.
The complement is counted by A343341.
The strict case is A343347.
The complement in the strict case is counted by A343377.
A000009 counts strict partitions.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A072233 counts partitions by sum and greatest part.

Programs

  • Mathematica
    Table[If[n==0,1,Length[Select[IntegerPartitions[n],FreeQ[#,1]&&And@@IntegerQ/@(Max@@#/#)&]]],{n,0,30}] (* Gus Wiseman, Apr 18 2021 *)
  • PARI
    seq(n)={Vec(1 + sum(m=1, n, my(u=divisors(m)); x^m/prod(i=1, #u, 1 - x^u[i] + O(x^(n-m+1)))))} \\ Andrew Howroyd, Apr 17 2021

Formula

G.f.: 1 + Sum_{n>0} x^n/Product_{d divides n} (1-x^d).

A237825 Number of partitions of n such that 3*(least part) = greatest part.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 5, 5, 8, 9, 13, 14, 18, 20, 27, 28, 35, 38, 49, 51, 61, 66, 81, 86, 102, 109, 130, 136, 161, 172, 202, 214, 245, 264, 305, 323, 369, 395, 452, 480, 544, 580, 657, 703, 786, 842, 947, 1008, 1124, 1205, 1340, 1432, 1589, 1702, 1886, 2014
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Examples

			a(7) = 3 counts these partitions:  331, 3211, 31111.
		

Crossrefs

Programs

  • Mathematica
    z = 64; q[n_] := q[n] = IntegerPartitions[n];
    Table[Count[q[n], p_ /; 3 Min[p] == Max[p]], {n, z}]     (* A237825*)
    Table[Count[q[n], p_ /; 4 Min[p] == Max[p]], {n, z}]     (* A237826 *)
    Table[Count[q[n], p_ /; 5 Min[p] == Max[p]], {n, z}]     (* A237827 *)
    Table[Count[q[n], p_ /; 2 Min[p] + 1 == Max[p]], {n, z}] (* A237828 *)
    Table[Count[q[n], p_ /; 2 Min[p] - 1 == Max[p]], {n, z}] (* A237829 *)
    Table[Count[IntegerPartitions[n],?(3#[[-1]]==#[[1]]&)],{n,60}] (* _Harvey P. Dale, May 14 2023 *)
    kmax = 57;
    Sum[x^(4 k)/Product[1 - x^j, {j, k, 3 k}], {k, 1, kmax}]/x + O[x]^kmax // CoefficientList[#, x]& (* Jean-François Alcover, May 30 2024, after Seiichi Manyama *)
  • PARI
    my(N=60, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/prod(j=k, 3*k, 1-x^j)))) \\ Seiichi Manyama, May 14 2023

Formula

G.f.: Sum_{k>=1} x^(4*k)/Product_{j=k..3*k} (1-x^j). - Seiichi Manyama, May 14 2023
a(n) ~ c * A376815^sqrt(n) / sqrt(n), where c = 0.23036554... - Vaclav Kotesovec, Jun 14 2025

A237826 Number of partitions of n such that 4*(least part) = greatest part.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 9, 12, 16, 20, 26, 31, 38, 47, 55, 67, 78, 92, 106, 126, 145, 167, 190, 219, 247, 288, 320, 366, 410, 466, 520, 591, 654, 739, 820, 924, 1018, 1148, 1263, 1415, 1562, 1740, 1911, 2136, 2342, 2607, 2859, 3169, 3469, 3849, 4208
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Examples

			a(8) = 3 counts these partitions:  431, 4211, 41111.
		

Crossrefs

Programs

  • Mathematica
    z = 64; q[n_] := q[n] = IntegerPartitions[n];
    Table[Count[q[n], p_ /; 3 Min[p] == Max[p]], {n, z}]     (* A237825*)
    Table[Count[q[n], p_ /; 4 Min[p] == Max[p]], {n, z}]     (* A237826 *)
    Table[Count[q[n], p_ /; 5 Min[p] == Max[p]], {n, z}]     (* A237827 *)
    Table[Count[q[n], p_ /; 2 Min[p] + 1 == Max[p]], {n, z}] (* A237828 *)
    Table[Count[q[n], p_ /; 2 Min[p] - 1 == Max[p]], {n, z}] (* A237829 *)
    Table[Count[IntegerPartitions[n],?(#[[1]]==4#[[-1]]&)],{n,60}] (* _Harvey P. Dale, Jun 15 2023 *)
    kmax = 55;
    Sum[x^(5k)/Product[1 - x^j, {j, k, 4 k}], {k, 1, kmax}]/x + O[x]^kmax // CoefficientList[#, x]& (* Jean-François Alcover, May 30 2024, after Seiichi Manyama *)
  • PARI
    my(N=60, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, N, x^(5*k)/prod(j=k, 4*k, 1-x^j)))) \\ Seiichi Manyama, May 14 2023

Formula

G.f.: Sum_{k>=1} x^(5*k)/Product_{j=k..4*k} (1-x^j). - Seiichi Manyama, May 14 2023
a(n) ~ c * d^sqrt(n) / sqrt(n), where d = 4.9219345... and c = 0.1699648... - Vaclav Kotesovec, Jun 19 2025

A237827 Number of partitions of n such that 5*(least part) = greatest part.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 13, 19, 24, 32, 39, 52, 61, 77, 93, 114, 133, 164, 188, 226, 261, 309, 353, 417, 471, 549, 622, 717, 808, 933, 1042, 1191, 1334, 1516, 1690, 1921, 2131, 2407, 2674, 3006, 3330, 3744, 4135, 4628, 5116, 5708, 6294, 7020
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Examples

			a(8) = 2 counts these partitions:  521, 5111.
		

Crossrefs

Programs

  • Mathematica
    z = 64; q[n_] := q[n] = IntegerPartitions[n];
    Table[Count[q[n], p_ /; 3 Min[p] = = Max[p]], {n, z}]     (* A237825*)
    Table[Count[q[n], p_ /; 4 Min[p] = = Max[p]], {n, z}]     (* A237826 *)
    Table[Count[q[n], p_ /; 5 Min[p] = = Max[p]], {n, z}]     (* A237827 *)
    Table[Count[q[n], p_ /; 2 Min[p] + 1 = = Max[p]], {n, z}] (* A237828 *)
    Table[Count[q[n], p_ /; 2 Min[p] - 1 = = Max[p]], {n, z}] (* A237829 *)
    (* Second program: *)
    kmax = 54;
    Sum[x^(6 k)/Product[1 - x^j, {j, k, 5 k}], {k, 1, kmax}]/x + O[x]^kmax // CoefficientList[#, x]& (* Jean-François Alcover, May 30 2024, after Seiichi Manyama *)
  • PARI
    my(N=60, x='x+O('x^N)); concat([0, 0, 0, 0, 0], Vec(sum(k=1, N, x^(6*k)/prod(j=k, 5*k, 1-x^j)))) \\ Seiichi Manyama, May 14 2023

Formula

G.f.: Sum_{k>=1} x^(6*k)/Product_{j=k..5*k} (1-x^j). - Seiichi Manyama, May 14 2023
a(n) ~ c * d^sqrt(n) / sqrt(n), where d = 5.4930955... and c = 0.135509... - Vaclav Kotesovec, Jun 19 2025

A130708 Number of compositions of n such that every part divides the largest part.

Original entry on oeis.org

1, 1, 2, 4, 8, 14, 26, 45, 79, 137, 241, 423, 754, 1343, 2410, 4344, 7870, 14305, 26103, 47763, 87649, 161229, 297251, 549108, 1016243, 1883898, 3497761, 6503420, 12107958, 22570221, 42121298, 78692765, 147165225, 275476533, 516115940
Offset: 0

Views

Author

Vladeta Jovovic, Jul 01 2007

Keywords

Crossrefs

Programs

  • Maple
    A130708 := proc(n) local gf,den1,den2,i,d ; gf := 1 ; for i from 1 to n do den1 := 1 ; den2 := 1 ; for d in numtheory[divisors](i) do den1 := den1-x^d ; if d < i then den2 := den2-x^d ; fi ; od ; gf := taylor(gf+x^i/den1/den2,x=0,n+1) ; od: coeftayl(gf,x=0,n) ; end: seq(A130708(n),n=0..40) ; # R. J. Mathar, Oct 28 2007
  • Mathematica
    m = 35;
    1 + Sum[x^n/((1 - Sum[x^d, {d, Divisors[n]}]) (1 - Sum[Boole[d < n] x^d, {d, Divisors[n]}])), {n, 1, m}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, May 22 2020 *)

Formula

G.f.: 1 + Sum_{n>0} x^n/((1-Sum_{d divides n} x^d)*(1-Sum_{d divides n,d

Extensions

More terms from R. J. Mathar, Oct 28 2007
Showing 1-6 of 6 results.