A237824
Number of partitions of n such that 2*(least part) >= greatest part.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 7, 10, 11, 13, 14, 19, 18, 23, 25, 29, 30, 38, 37, 46, 48, 54, 57, 70, 69, 80, 85, 97, 100, 118, 118, 137, 144, 159, 168, 193, 195, 220, 233, 259, 268, 303, 311, 348, 367, 399, 419, 469, 483, 532, 560, 610, 639, 704, 732, 801, 841, 908, 954
Offset: 1
a(6) = 7 counts these partitions: 6, 42, 33, 222, 2211, 21111, 111111.
From _Gus Wiseman_, May 14 2023: (Start)
The a(1) = 1 through a(8) = 10 partitions such that 2*(least part) >= greatest part:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (211) (221) (42) (322) (53)
(1111) (2111) (222) (2221) (332)
(11111) (2211) (22111) (422)
(21111) (211111) (2222)
(111111) (1111111) (22211)
(221111)
(2111111)
(11111111)
The a(1) = 1 through a(8) = 10 partitions whose greatest part appears at a middle position:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (221) (51) (61) (62)
(11111) (222) (331) (71)
(2211) (2221) (332)
(111111) (1111111) (2222)
(3311)
(22211)
(11111111)
(End)
These partitions have ranks
A362981.
-
z = 60; q[n_] := q[n] = IntegerPartitions[n];
Table[Count[q[n], p_ /; 2 Min[p] < Max[p]], {n, z}] (* A237820 *)
Table[Count[q[n], p_ /; 2 Min[p] <= Max[p]], {n, z}] (* A237821 *)
Table[Count[q[n], p_ /; 2 Min[p] == Max[p]], {n, z}] (* A118096 *)
Table[Count[q[n], p_ /; 2 Min[p] > Max[p]], {n, z}] (* A053263 *)
Table[Count[q[n], p_ /; 2 Min[p] >= Max[p]], {n, z}] (* this sequence *)
(* or *)
nmax = 100; Rest[CoefficientList[Series[Sum[x^k/Product[1 - x^j, {j,k,2*k}], {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 13 2025 *)
(* or *)
nmax = 100; p = 1; s = 0; Do[p = Simplify[p*(1 - x^(2*k - 1))*(1 - x^(2*k))/(1 - x^k)]; p = Normal[p + O[x]^(nmax+1)]; s += x^k/(1 - x^k)/p;, {k, 1, nmax}]; Rest[CoefficientList[Series[s, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 14 2025 *)
-
N=60; x='x+O('x^N);
gf = sum(m=1, N, (x^m)/(1-x^m)) + sum(i=1, N, sum(j=1, i, x^((2*i)+j)/prod(k=0, j, 1 - x^(k+i))));
Vec(gf) \\ John Tyler Rascoe, Mar 07 2024
A361849
Number of integer partitions of n such that the maximum is twice the median.
Original entry on oeis.org
0, 0, 0, 1, 1, 1, 4, 3, 4, 7, 9, 9, 15, 16, 20, 26, 34, 37, 50, 55, 68, 86, 103, 117, 145, 168, 201, 236, 282, 324, 391, 449, 525, 612, 712, 818, 962, 1106, 1278, 1470, 1698, 1939, 2238, 2550, 2924, 3343, 3824, 4341, 4963, 5627, 6399, 7256, 8231, 9300
Offset: 1
The a(4) = 1 through a(11) = 9 partitions:
211 2111 21111 421 422 4221 631 632
3211 221111 4311 4222 5321
22111 2111111 2211111 42211 5411
211111 21111111 322111 42221
2221111 43211
22111111 332111
211111111 22211111
221111111
2111111111
For example, the partition (3,2,1,1) has maximum 3 and median 3/2, so is counted under a(7).
For minimum instead of median we have
A118096.
For length instead of median we have
A237753.
For mean instead of median we have
A361853.
These partitions have ranks
A361856.
For "greater" instead of "equal" we have
A361857, allowing equality
A361859.
A361860 counts partitions with minimum equal to median.
A361856
Positive integers whose prime indices satisfy (maximum) = 2*(median).
Original entry on oeis.org
12, 24, 42, 48, 60, 63, 72, 96, 126, 130, 140, 144, 189, 192, 195, 252, 266, 288, 308, 325, 330, 360, 378, 384, 399, 420, 432, 495, 546, 567, 572, 576, 588, 600, 630, 638, 650, 665, 756, 768, 819, 864, 882, 884, 931, 945, 957, 962, 975, 1122, 1134, 1152, 1190
Offset: 1
The terms together with their prime indices begin:
12: {1,1,2}
24: {1,1,1,2}
42: {1,2,4}
48: {1,1,1,1,2}
60: {1,1,2,3}
63: {2,2,4}
72: {1,1,1,2,2}
96: {1,1,1,1,1,2}
126: {1,2,2,4}
130: {1,3,6}
140: {1,1,3,4}
144: {1,1,1,1,2,2}
The prime indices of 126 are {1,2,2,4}, with maximum 4 and median 2, so 126 is in the sequence.
The prime indices of 308 are {1,1,4,5}, with maximum 5 and median 5/2, so 308 is in the sequence.
The LHS (greatest prime index) is
A061395.
These partitions are counted by
A361849.
A000975 counts subsets with integer median.
-
prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Max@@prix[#]==2*Median[prix[#]]&]
A237821
Number of partitions of n such that 2*(least part) <= greatest part.
Original entry on oeis.org
0, 0, 1, 2, 4, 7, 11, 16, 25, 35, 48, 68, 92, 123, 164, 216, 282, 367, 471, 604, 769, 975, 1225, 1542, 1924, 2395, 2968, 3669, 4514, 5547, 6781, 8280, 10071, 12229, 14796, 17881, 21537, 25902, 31066, 37206, 44443, 53021, 63098, 74995, 88946, 105350, 124533
Offset: 1
a(6) = 7 counts these partitions: 51, 42, 411, 321, 3111, 2211, 21111.
From _Gus Wiseman_, May 15 2023: (Start)
The a(3) = 1 through a(8) = 16 partitions wirth 2*(least part) <= greatest part:
(21) (31) (41) (42) (52)
(211) (221) (51) (61)
(311) (321) (331)
(2111) (411) (421)
(2211) (511)
(3111) (2221)
(21111) (3211)
(4111)
(22111)
(31111)
(211111)
The a(3) = 1 through a(8) = 16 partitions with different median from maximum:
(21) (31) (32) (42) (43)
(211) (41) (51) (52)
(311) (321) (61)
(2111) (411) (322)
(2211) (421)
(3111) (511)
(21111) (3211)
(4111)
(22111)
(31111)
(211111)
(End)
These partitions have ranks
A069900.
The conjugate partitions have ranks
A362980.
-
z = 60; q[n_] := q[n] = IntegerPartitions[n];
Table[Count[q[n], p_ /; 2 Min[p] < Max[p]], {n, z}] (* A237820 *)
Table[Count[q[n], p_ /; 2 Min[p] <= Max[p]], {n, z}] (* A237821 *)
Table[Count[q[n], p_ /; 2 Min[p] = = Max[p]], {n, z}](* A118096 *)
Table[Count[q[n], p_ /; 2 Min[p] > Max[p]], {n, z}] (* A053263 *)
Table[Count[q[n], p_ /; 2 Min[p] >= Max[p]], {n, z}] (* A237824 *)
A361853
Number of integer partitions of n such that (length) * (maximum) = 2n.
Original entry on oeis.org
0, 0, 0, 0, 0, 2, 0, 1, 2, 4, 0, 10, 0, 8, 16, 10, 0, 31, 0, 44, 44, 20, 0, 92, 50, 28, 98, 154, 0, 266, 0, 154, 194, 48, 434, 712, 0, 60, 348, 910, 0, 1198, 0, 1120, 2138, 88, 0, 2428, 1300, 1680, 912, 2506, 0, 4808, 4800, 5968, 1372, 140, 0, 14820, 0, 160
Offset: 1
The a(6) = 2 through a(12) = 10 partitions:
(411) . (4211) (621) (5221) . (822)
(3111) (321111) (5311) (831)
(42211) (6222)
(43111) (6321)
(6411)
(422211)
(432111)
(441111)
(32211111)
(33111111)
The partition y = (6,4,1,1) has diagram:
o o o o o o
o o o o . .
o . . . . .
o . . . . .
Since the partition and its complement (shown in dots) have the same size, y is counted under a(12).
For minimum instead of mean we have
A118096.
For length instead of mean we have
A237753.
These partitions have ranks
A361855.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.
Cf.
A111907,
A116608,
A188814,
A237755,
A237824,
A237984,
A240219,
A326849,
A327482,
A349156,
A359894.
A361855
Numbers > 1 whose prime indices satisfy (maximum) * (length) = 2*(sum).
Original entry on oeis.org
28, 40, 78, 84, 171, 190, 198, 220, 240, 252, 280, 351, 364, 390, 406, 435, 714, 748, 756, 765, 777, 784, 814, 840, 850, 925, 988, 1118, 1197, 1254, 1330, 1352, 1419, 1425, 1440, 1505, 1564, 1600, 1638, 1716, 1755, 1794, 1802, 1820, 1950, 2067, 2204, 2254
Offset: 1
The terms together with their prime indices begin:
28: {1,1,4}
40: {1,1,1,3}
78: {1,2,6}
84: {1,1,2,4}
171: {2,2,8}
190: {1,3,8}
198: {1,2,2,5}
220: {1,1,3,5}
240: {1,1,1,1,2,3}
252: {1,1,2,2,4}
280: {1,1,1,3,4}
The prime indices of 84 are {1,1,2,4}, with maximum 4, length 4, and sum 8, and 4*4 = 2*8, so 84 is in the sequence.
The prime indices of 120 are {1,1,1,2,3}, with maximum 3, length 5, and sum 8, and 3*5 != 2*8, so 120 is not in the sequence.
The prime indices of 252 are {1,1,2,2,4}, with maximum 4, length 5, and sum 10, and 4*5 = 2*10, so 252 is in the sequence.
The partition (5,2,2,1) with Heinz number 198 has diagram:
o o o o o
o o . . .
o o . . .
o . . . .
Since the partition and its complement (shown in dots) both have size 10, 198 is in the sequence.
A061395 gives greatest prime index.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[2,100],Max@@prix[#]*PrimeOmega[#]==2*Total[prix[#]]&]
A361860
Number of integer partitions of n whose median part is the smallest.
Original entry on oeis.org
1, 2, 2, 4, 4, 7, 8, 12, 15, 21, 25, 36, 44, 58, 72, 95, 117, 150, 185, 235, 289, 362, 441, 550, 670, 824, 1000, 1223, 1476, 1795, 2159, 2609, 3126, 3758, 4485, 5369, 6388, 7609, 9021, 10709, 12654, 14966, 17632, 20782, 24414, 28684, 33601, 39364, 45996
Offset: 1
The a(1) = 1 through a(8) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (311) (33) (322) (44)
(211) (2111) (222) (511) (422)
(1111) (11111) (411) (4111) (611)
(3111) (22111) (2222)
(21111) (31111) (5111)
(111111) (211111) (32111)
(1111111) (41111)
(221111)
(311111)
(2111111)
(11111111)
For mean instead of median we have
A000005.
For length instead of median we have
A006141.
For maximum instead of median we have
A053263.
Cf.
A027193,
A053263,
A067659,
A111907,
A116608,
A118096,
A237753,
A240219,
A359907,
A361848,
A361849.
A237820
Number of partitions of n such that 2*(least part) < greatest part.
Original entry on oeis.org
0, 0, 0, 1, 2, 4, 8, 12, 19, 29, 42, 58, 83, 112, 151, 202, 267, 347, 453, 581, 744, 948, 1198, 1505, 1889, 2356, 2925, 3621, 4465, 5486, 6724, 8212, 9999, 12151, 14715, 17784, 21442, 25795, 30952, 37079, 44315, 52871, 62950, 74827, 88767, 105159, 124335
Offset: 1
a(6) = 4 counts these partitions: 51, 411, 321, 3111.
-
z = 60; q[n_] := q[n] = IntegerPartitions[n];
Table[Count[q[n], p_ /; 2 Min[p] < Max[p]], {n, z}] (* A237820 *)
Table[Count[q[n], p_ /; 2 Min[p] <= Max[p]], {n, z}] (* A237821 *)
Table[Count[q[n], p_ /; 2 Min[p] = = Max[p]], {n, z}](* A118096 *)
Table[Count[q[n], p_ /; 2 Min[p] > Max[p]], {n, z}] (* A053263 *)
Table[Count[q[n], p_ /; 2 Min[p] >= Max[p]], {n, z}] (* A237824 *)
-
A(n) = {concat([0,0,0], Vec(sum(i=1, n, sum(j=1, n-3*i, x^(3*i+j)/prod(k=i, min(n-3*i-j,2*i+j), 1-x^k)))+ O('x^(n+1))))} \\ John Tyler Rascoe, Jun 21 2025
A237828
Number of partitions of n such that 2*(least part) + 1 = greatest part.
Original entry on oeis.org
0, 0, 0, 1, 1, 2, 4, 4, 6, 9, 10, 12, 17, 18, 22, 27, 31, 34, 42, 45, 53, 61, 66, 72, 86, 92, 103, 113, 125, 135, 154, 163, 180, 197, 213, 229, 257, 271, 294, 318, 346, 368, 404, 426, 463, 497, 532, 564, 616, 651, 700, 747, 798, 844, 912, 962, 1033, 1097, 1167, 1231, 1327, 1397, 1486, 1576, 1677
Offset: 1
a(8) = 4 counts these partitions: 3311, 3221, 32111, 311111.
-
z = 64; q[n_] := q[n] = IntegerPartitions[n];
Table[Count[q[n], p_ /; 3 Min[p] = = Max[p]], {n, z}] (* A237825*)
Table[Count[q[n], p_ /; 4 Min[p] = = Max[p]], {n, z}] (* A237826 *)
Table[Count[q[n], p_ /; 5 Min[p] = = Max[p]], {n, z}] (* A237827 *)
Table[Count[q[n], p_ /; 2 Min[p] + 1 = = Max[p]], {n, z}] (* A237828 *)
Table[Count[q[n], p_ /; 2 Min[p] - 1 = = Max[p]], {n, z}] (* A237829 *)
Table[Count[IntegerPartitions[n],?(2*Min[#]+1==Max[#]&)],{n,60}] (* _Harvey P. Dale, Jun 25 2017 *)
kmax = 65;
Sum[x^(3k+1)/Product[1-x^j, {j, k, 2k+1}], {k, 1, kmax}]/x + O[x]^kmax // CoefficientList[#, x]& (* Jean-François Alcover, May 30 2024, after Seiichi Manyama *)
nmax = 100; p = 1; s = 0; Do[p = Simplify[p*(1 - x^(2*k - 1))*(1 - x^(2*k))/(1 - x^k)]; p = Normal[p + O[x]^(nmax + 1)]; s += x^(3*k + 1)/(1 - x^k)/(1 - x^(2*k + 1))/p;, {k, 1, nmax}]; Rest[CoefficientList[Series[s, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 18 2025 *)
-
my(N=70, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(3*k+1)/prod(j=k, 2*k+1, 1-x^j)))) \\ Seiichi Manyama, May 17 2023
A361908
Positive integers > 1 whose prime indices satisfy (maximum) = 2*(minimum).
Original entry on oeis.org
6, 12, 18, 21, 24, 36, 48, 54, 63, 65, 72, 96, 105, 108, 133, 144, 147, 162, 189, 192, 216, 288, 315, 319, 324, 325, 384, 432, 441, 455, 481, 486, 525, 567, 576, 648, 715, 731, 735, 768, 845, 864, 931, 945, 972, 1007, 1029, 1152, 1296, 1323, 1403, 1458, 1463
Offset: 1
The terms together with their prime indices begin:
6: {1,2}
12: {1,1,2}
18: {1,2,2}
21: {2,4}
24: {1,1,1,2}
36: {1,1,2,2}
48: {1,1,1,1,2}
54: {1,2,2,2}
63: {2,2,4}
65: {3,6}
72: {1,1,1,2,2}
96: {1,1,1,1,1,2}
The RHS is 2*
A055396 (twice minimum).
The LHS is
A061395 (greatest prime index).
Partitions of this type are counted by
A118096.
A001221 (omega) counts distinct prime factors.
A001222 (bigomega) counts prime factors with multiplicity.
-
filter:= proc(n) local F,b;
if n::even then b:= padic:-ordp(n,3);
if b = 0 then return false else return n = 2^padic:-ordp(n,2) * 3^b fi
fi;
F:= ifactors(n)[2][..,1];
nops(F) >= 2 and numtheory:-pi(max(F)) = 2*numtheory:-pi(min(F))
end proc:
select(filter, [$1..2000]); # Robert Israel, Mar 11 2025
-
Select[Range[2,100],PrimePi[FactorInteger[#][[-1,1]]]==2*PrimePi[FactorInteger[#][[1,1]]]&]
Showing 1-10 of 31 results.
Comments