cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A118096 Number of partitions of n such that the largest part is twice the smallest part.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 3, 4, 6, 6, 6, 10, 9, 11, 13, 14, 15, 20, 18, 23, 25, 27, 27, 37, 35, 39, 43, 48, 49, 61, 57, 68, 72, 78, 81, 97, 95, 107, 114, 127, 128, 150, 148, 168, 179, 191, 198, 229, 230, 254, 266, 291, 300, 338, 344, 379, 398, 427, 444, 498, 505, 550, 580, 625
Offset: 1

Views

Author

Emeric Deutsch, Apr 12 2006

Keywords

Comments

Also number of partitions of n such that if the largest part occurs k times, then the number of parts is 2k. Example: a(8)=4 because we have [7,1], [6,2], [5,3] and [3,3,1,1].

Examples

			a(8)=4 because we have [4,2,2], [2,2,2,1,1], [2,2,1,1,1,1] and [2,1,1,1,1,1,1].
		

Crossrefs

Programs

  • Maple
    g:=sum(x^(3*k)/product(1-x^j,j=k..2*k),k=1..30): gser:=series(g,x=0,75): seq(coeff(gser,x,n),n=1..70);
    # second Maple program:
    b:= proc(n, i, t) option remember: `if`(n=0, 1, `if`(in, 0, b(n-i, i, t))))
        end:
    a:= n-> add(b(n-3*j, 2*j, j), j=1..n/3):
    seq(a(n), n=1..64);  # Alois P. Heinz, Sep 04 2017
  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; 2 Min[p] = = Max[p]], {n, 40}] (* Clark Kimberling, Feb 16 2014 *)
    (* Second program: *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < t, 0,
         b[n, i - 1, t] + If[i > n, 0, b[n - i, i, t]]]];
    a[n_] := Sum[b[n - 3j, 2j, j], {j, 1, n/3}];
    Array[a, 64] (* Jean-François Alcover, Jun 04 2021, after Alois P. Heinz *)
    (* Third program: *)
    nmax = 100; p = 1; s = 0; Do[p = Simplify[p*(1 - x^(2*k - 1))*(1 - x^(2*k))/(1 - x^k)]; p = Normal[p + O[x]^(nmax+1)]; s += x^(3*k)/(1 - x^k)/p;, {k, 1, nmax}]; Rest[CoefficientList[Series[s, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 16 2025 *)
  • PARI
    my(N=70, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(3*k)/prod(j=k, 2*k, 1-x^j)))) \\ Seiichi Manyama, May 14 2023

Formula

G.f.: Sum_{k>=1} x^(3*k)/Product_{j=k..2*k} (1-x^j).
a(n) ~ exp(Pi*sqrt(2*n/15)) / (5^(1/4)*sqrt(2*phi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 13 2025

A237828 Number of partitions of n such that 2*(least part) + 1 = greatest part.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 4, 6, 9, 10, 12, 17, 18, 22, 27, 31, 34, 42, 45, 53, 61, 66, 72, 86, 92, 103, 113, 125, 135, 154, 163, 180, 197, 213, 229, 257, 271, 294, 318, 346, 368, 404, 426, 463, 497, 532, 564, 616, 651, 700, 747, 798, 844, 912, 962, 1033, 1097, 1167, 1231, 1327, 1397, 1486, 1576, 1677
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Comments

Also, the number of partitions p of n such that if h = max(p), then h is an (h,0)-separator of p; for example, a(10) counts these 9 partitions: 181, 271, 361, 262, 451, 352, 343, 23131, 1212121. - Clark Kimberling, Mar 24 2014

Examples

			a(8) = 4 counts these partitions:  3311, 3221, 32111, 311111.
		

Crossrefs

Programs

  • Mathematica
    z = 64; q[n_] := q[n] = IntegerPartitions[n];
    Table[Count[q[n], p_ /; 3 Min[p] = = Max[p]], {n, z}]     (* A237825*)
    Table[Count[q[n], p_ /; 4 Min[p] = = Max[p]], {n, z}]     (* A237826 *)
    Table[Count[q[n], p_ /; 5 Min[p] = = Max[p]], {n, z}]     (* A237827 *)
    Table[Count[q[n], p_ /; 2 Min[p] + 1 = = Max[p]], {n, z}] (* A237828 *)
    Table[Count[q[n], p_ /; 2 Min[p] - 1 = = Max[p]], {n, z}] (* A237829 *)
    Table[Count[IntegerPartitions[n],?(2*Min[#]+1==Max[#]&)],{n,60}] (* _Harvey P. Dale, Jun 25 2017 *)
    kmax = 65;
    Sum[x^(3k+1)/Product[1-x^j, {j, k, 2k+1}], {k, 1, kmax}]/x + O[x]^kmax // CoefficientList[#, x]& (* Jean-François Alcover, May 30 2024, after Seiichi Manyama *)
    nmax = 100; p = 1; s = 0; Do[p = Simplify[p*(1 - x^(2*k - 1))*(1 - x^(2*k))/(1 - x^k)]; p = Normal[p + O[x]^(nmax + 1)]; s += x^(3*k + 1)/(1 - x^k)/(1 - x^(2*k + 1))/p;, {k, 1, nmax}]; Rest[CoefficientList[Series[s, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 18 2025 *)
  • PARI
    my(N=70, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(3*k+1)/prod(j=k, 2*k+1, 1-x^j)))) \\ Seiichi Manyama, May 17 2023

Formula

G.f.: Sum_{k>=1} x^(3*k+1)/Product_{j=k..2*k+1} (1-x^j). - Seiichi Manyama, May 17 2023
a(n) ~ sqrt(phi) * exp(Pi*sqrt(2*n/15)) / (sqrt(2)* 5^(1/4) * sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 20 2025

A237826 Number of partitions of n such that 4*(least part) = greatest part.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 9, 12, 16, 20, 26, 31, 38, 47, 55, 67, 78, 92, 106, 126, 145, 167, 190, 219, 247, 288, 320, 366, 410, 466, 520, 591, 654, 739, 820, 924, 1018, 1148, 1263, 1415, 1562, 1740, 1911, 2136, 2342, 2607, 2859, 3169, 3469, 3849, 4208
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Examples

			a(8) = 3 counts these partitions:  431, 4211, 41111.
		

Crossrefs

Programs

  • Mathematica
    z = 64; q[n_] := q[n] = IntegerPartitions[n];
    Table[Count[q[n], p_ /; 3 Min[p] == Max[p]], {n, z}]     (* A237825*)
    Table[Count[q[n], p_ /; 4 Min[p] == Max[p]], {n, z}]     (* A237826 *)
    Table[Count[q[n], p_ /; 5 Min[p] == Max[p]], {n, z}]     (* A237827 *)
    Table[Count[q[n], p_ /; 2 Min[p] + 1 == Max[p]], {n, z}] (* A237828 *)
    Table[Count[q[n], p_ /; 2 Min[p] - 1 == Max[p]], {n, z}] (* A237829 *)
    Table[Count[IntegerPartitions[n],?(#[[1]]==4#[[-1]]&)],{n,60}] (* _Harvey P. Dale, Jun 15 2023 *)
    kmax = 55;
    Sum[x^(5k)/Product[1 - x^j, {j, k, 4 k}], {k, 1, kmax}]/x + O[x]^kmax // CoefficientList[#, x]& (* Jean-François Alcover, May 30 2024, after Seiichi Manyama *)
  • PARI
    my(N=60, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, N, x^(5*k)/prod(j=k, 4*k, 1-x^j)))) \\ Seiichi Manyama, May 14 2023

Formula

G.f.: Sum_{k>=1} x^(5*k)/Product_{j=k..4*k} (1-x^j). - Seiichi Manyama, May 14 2023
a(n) ~ c * d^sqrt(n) / sqrt(n), where d = 4.9219345... and c = 0.1699648... - Vaclav Kotesovec, Jun 19 2025

A237827 Number of partitions of n such that 5*(least part) = greatest part.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 13, 19, 24, 32, 39, 52, 61, 77, 93, 114, 133, 164, 188, 226, 261, 309, 353, 417, 471, 549, 622, 717, 808, 933, 1042, 1191, 1334, 1516, 1690, 1921, 2131, 2407, 2674, 3006, 3330, 3744, 4135, 4628, 5116, 5708, 6294, 7020
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Examples

			a(8) = 2 counts these partitions:  521, 5111.
		

Crossrefs

Programs

  • Mathematica
    z = 64; q[n_] := q[n] = IntegerPartitions[n];
    Table[Count[q[n], p_ /; 3 Min[p] = = Max[p]], {n, z}]     (* A237825*)
    Table[Count[q[n], p_ /; 4 Min[p] = = Max[p]], {n, z}]     (* A237826 *)
    Table[Count[q[n], p_ /; 5 Min[p] = = Max[p]], {n, z}]     (* A237827 *)
    Table[Count[q[n], p_ /; 2 Min[p] + 1 = = Max[p]], {n, z}] (* A237828 *)
    Table[Count[q[n], p_ /; 2 Min[p] - 1 = = Max[p]], {n, z}] (* A237829 *)
    (* Second program: *)
    kmax = 54;
    Sum[x^(6 k)/Product[1 - x^j, {j, k, 5 k}], {k, 1, kmax}]/x + O[x]^kmax // CoefficientList[#, x]& (* Jean-François Alcover, May 30 2024, after Seiichi Manyama *)
  • PARI
    my(N=60, x='x+O('x^N)); concat([0, 0, 0, 0, 0], Vec(sum(k=1, N, x^(6*k)/prod(j=k, 5*k, 1-x^j)))) \\ Seiichi Manyama, May 14 2023

Formula

G.f.: Sum_{k>=1} x^(6*k)/Product_{j=k..5*k} (1-x^j). - Seiichi Manyama, May 14 2023
a(n) ~ c * d^sqrt(n) / sqrt(n), where d = 5.4930955... and c = 0.135509... - Vaclav Kotesovec, Jun 19 2025

A237829 Number of partitions of n such that 2*(least part) - 1 = greatest part.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 2, 2, 5, 3, 4, 5, 5, 6, 8, 6, 8, 10, 10, 10, 15, 12, 14, 17, 18, 20, 23, 21, 26, 29, 30, 31, 39, 38, 42, 46, 49, 52, 61, 60, 68, 74, 77, 83, 94, 95, 104, 112, 122, 128, 143, 144, 159, 172, 181, 192, 212, 219, 237, 253, 271, 285
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Examples

			a(8) = 3 counts these partitions:  53, 332, 11111111.
		

Crossrefs

Programs

  • Mathematica
    z = 64; q[n_] := q[n] = IntegerPartitions[n];
    Table[Count[q[n], p_ /; 3 Min[p] == Max[p]], {n, z}]     (* A237825*)
    Table[Count[q[n], p_ /; 4 Min[p] == Max[p]], {n, z}]     (* A237826 *)
    Table[Count[q[n], p_ /; 5 Min[p] == Max[p]], {n, z}]     (* A237827 *)
    Table[Count[q[n], p_ /; 2 Min[p] + 1 == Max[p]], {n, z}] (* A237828 *)
    Table[Count[q[n], p_ /; 2 Min[p] - 1 == Max[p]], {n, z}] (* A237829 *)
    (* Second program: *)
    kmax = 64;
    Sum[x^(3k-1)/Product[1-x^j, {j, k, 2k-1}], {k, 1, kmax}]/x+1+O[x]^kmax // CoefficientList[#, x]& (* Jean-François Alcover, May 30 2024, after Seiichi Manyama *)
    nmax = 100; p = 1; s = x; Do[p = Simplify[p*(1 - x^(2*k - 1))*(1 - x^(2*k))/(1 - x^k)]; p = Normal[p + O[x]^(nmax + 1)]; s += x^(3*k - 1)/(1 - x^k)*(1 - x^(2*k))/p;, {k, 1, nmax}]; Rest[CoefficientList[Series[s, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 18 2025 *)
  • PARI
    my(N=70, x='x+O('x^N)); Vec(x+sum(k=1, N, x^(3*k-1)/prod(j=k, 2*k-1, 1-x^j))) \\ Seiichi Manyama, May 17 2023

Formula

G.f.: x + Sum_{k>=1} x^(3*k-1)/Product_{j=k..2*k-1} (1-x^j). - Seiichi Manyama, May 17 2023
a(n) ~ exp(Pi*sqrt(2*n/15)) / (sqrt(2)* 5^(1/4) * phi^(3/2) * sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 20 2025

A363066 Number of partitions p of n such that (1/3)*max(p) is a part of p.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 2, 3, 5, 6, 9, 11, 16, 20, 27, 33, 45, 55, 72, 89, 116, 142, 181, 222, 281, 343, 429, 522, 649, 786, 967, 1168, 1429, 1719, 2088, 2504, 3026, 3615, 4345, 5174, 6192, 7349, 8755, 10360, 12297, 14507, 17154, 20182, 23788, 27910, 32790, 38374, 44955, 52480, 61307, 71402
Offset: 0

Views

Author

Seiichi Manyama, May 16 2023

Keywords

Examples

			a(7) = 3 counts these partitions:  331, 3211, 31111.
		

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(4*k)/Product[1 - x^j, {j, 1, 3*k}], {k, 0, nmax}], {x, 0, nmax}], x]  (* Vaclav Kotesovec, Jun 18 2025 *)
    nmax = 60; p=1; s=1; Do[p=Expand[p*(1-x^(3*k))*(1-x^(3*k-1))*(1-x^(3*k-2))]; p=Take[p, Min[nmax+1, Exponent[p, x]+1, Length[p]]]; s+=x^(4*k)/p; , {k, 1, nmax}]; CoefficientList[Series[s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 18 2025 *)
    Join[{1},Table[Count[IntegerPartitions[n],?(MemberQ[#,#[[1]]/3]&)],{n,60}]] (* _Harvey P. Dale, Jun 29 2025 *)
  • PARI
    a(n) = sum(k=0, n\4, #partitions(n-4*k, 3*k));

Formula

G.f.: Sum_{k>=0} x^(4*k)/Product_{j=1..3*k} (1-x^j).
a(n) ~ Gamma(1/3) * Pi^(1/3) * exp(Pi*sqrt(2*n/3)) / (2^(13/6) * 3^(8/3) * n^(7/6)). - Vaclav Kotesovec, Jun 19 2025

A238590 Number of partitions p of n such that 3*min(p) is a part of p.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 6, 7, 12, 16, 25, 32, 46, 61, 86, 110, 149, 192, 257, 326, 425, 538, 694, 871, 1107, 1381, 1740, 2154, 2689, 3313, 4103, 5024, 6176, 7529, 9201, 11157, 13554, 16365, 19784, 23782, 28610, 34260, 41039, 48958, 58405, 69431, 82525, 97775
Offset: 1

Views

Author

Clark Kimberling, Mar 01 2014

Keywords

Examples

			a(7) = 3 counts these partitions:  331, 3211, 31111.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, b(n, i+1)+b(n-i, i)))
        end:
    a:= n-> add(b(n-4*i, i), i=1..n/4):
    seq(a(n), n=1..60);  # Alois P. Heinz, Mar 03 2014
  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, 3*Min[p]]], {n, 50}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i>n, 0, b[n, i+1] + b[n-i, i]]];
    a[n_] := Sum[b[n-4i, i], {i, 1, n/4}];
    Array[a, 60] (* Jean-François Alcover, Jun 04 2021, after Alois P. Heinz *)
  • PARI
    my(N=50, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/prod(j=k, N, 1-x^j)))) \\ Seiichi Manyama, May 17 2023

Formula

G.f.: Sum_{k>=1} x^(4*k)/Product_{j>=k} (1-x^j). - Seiichi Manyama, May 17 2023
From Vaclav Kotesovec, Jun 19 2025: (Start)
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n) * (1 - (sqrt(3/2)/Pi + 73*Pi/(24*sqrt(6))) / sqrt(n)).
A000041(n) - a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (2^(5/2) * n^(3/2)). (End)

A363075 Number of partitions of n such that 3*(least part) + 1 = greatest part.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 6, 6, 10, 12, 18, 20, 27, 32, 42, 47, 59, 67, 85, 94, 113, 126, 152, 169, 198, 220, 257, 282, 326, 359, 413, 452, 512, 563, 639, 695, 781, 853, 958, 1041, 1161, 1261, 1402, 1524, 1685, 1827, 2021, 2186, 2407, 2604, 2861, 3088, 3385, 3657, 4002, 4316, 4704, 5069, 5531
Offset: 1

Views

Author

Seiichi Manyama, May 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; p = 1; s = 0; Do[p = Simplify[p*(1 - x^(3*k - 2))*(1 - x^(3*k - 1))*(1 - x^(3*k))/(1 - x^k)]; p = Normal[p + O[x]^(nmax + 1)]; s += x^(4*k + 1)/(1 - x^k)/(1 - x^(3*k + 1))/p;, {k, 1, nmax}]; Rest[CoefficientList[Series[s, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 19 2025 *)
  • PARI
    my(N=70, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, N, x^(4*k+1)/prod(j=k, 3*k+1, 1-x^j))))

Formula

G.f.: Sum_{k>=1} x^(4*k+1)/Product_{j=k..3*k+1} (1-x^j).
a(n) ~ c * A376815^sqrt(n) / sqrt(n), where c = 0.33761... - Vaclav Kotesovec, Jun 20 2025

A386360 Number of partitions of n such that the least part occurs exactly (1/3)*(number of parts) times.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 4, 6, 8, 10, 13, 17, 21, 27, 33, 41, 50, 63, 75, 93, 111, 136, 163, 198, 235, 285, 337, 406, 479, 574, 676, 806, 948, 1124, 1318, 1557, 1822, 2147, 2505, 2940, 3424, 4006, 4657, 5431, 6299, 7329, 8483, 9843, 11372, 13163, 15177, 17527, 20175
Offset: 1

Views

Author

Seiichi Manyama, Jul 19 2025

Keywords

Crossrefs

Programs

  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def A(n, k)
      cnt = 0
      partition(n, 1, n).each{|ary|
        cnt += 1 if k * ary.count(ary.min) == ary.size
      }
      cnt
    end
    def A386360(n)
      (1..n).map{|i| A(i, 3)}
    end
    p A386360(40)

A363211 Number of partitions of n such that 3*(least part) <= greatest part.

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 7, 12, 18, 27, 39, 56, 78, 106, 143, 193, 254, 333, 432, 560, 717, 914, 1157, 1461, 1833, 2292, 2849, 3536, 4362, 5372, 6587, 8062, 9825, 11951, 14487, 17533, 21150, 25469, 30583, 36670, 43850, 52357, 62366, 74184, 88048, 104359, 123442, 145826, 171946, 202487
Offset: 1

Views

Author

Seiichi Manyama, May 27 2023

Keywords

Crossrefs

Programs

Formula

G.f.: Sum_{i>=1} Sum_{j>=0} x^(4*i+j) /Product_{k=i..3*i+j} (1-x^k).
Showing 1-10 of 10 results.