cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A118096 Number of partitions of n such that the largest part is twice the smallest part.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 3, 4, 6, 6, 6, 10, 9, 11, 13, 14, 15, 20, 18, 23, 25, 27, 27, 37, 35, 39, 43, 48, 49, 61, 57, 68, 72, 78, 81, 97, 95, 107, 114, 127, 128, 150, 148, 168, 179, 191, 198, 229, 230, 254, 266, 291, 300, 338, 344, 379, 398, 427, 444, 498, 505, 550, 580, 625
Offset: 1

Views

Author

Emeric Deutsch, Apr 12 2006

Keywords

Comments

Also number of partitions of n such that if the largest part occurs k times, then the number of parts is 2k. Example: a(8)=4 because we have [7,1], [6,2], [5,3] and [3,3,1,1].

Examples

			a(8)=4 because we have [4,2,2], [2,2,2,1,1], [2,2,1,1,1,1] and [2,1,1,1,1,1,1].
		

Crossrefs

Programs

  • Maple
    g:=sum(x^(3*k)/product(1-x^j,j=k..2*k),k=1..30): gser:=series(g,x=0,75): seq(coeff(gser,x,n),n=1..70);
    # second Maple program:
    b:= proc(n, i, t) option remember: `if`(n=0, 1, `if`(in, 0, b(n-i, i, t))))
        end:
    a:= n-> add(b(n-3*j, 2*j, j), j=1..n/3):
    seq(a(n), n=1..64);  # Alois P. Heinz, Sep 04 2017
  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; 2 Min[p] = = Max[p]], {n, 40}] (* Clark Kimberling, Feb 16 2014 *)
    (* Second program: *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i < t, 0,
         b[n, i - 1, t] + If[i > n, 0, b[n - i, i, t]]]];
    a[n_] := Sum[b[n - 3j, 2j, j], {j, 1, n/3}];
    Array[a, 64] (* Jean-François Alcover, Jun 04 2021, after Alois P. Heinz *)
    (* Third program: *)
    nmax = 100; p = 1; s = 0; Do[p = Simplify[p*(1 - x^(2*k - 1))*(1 - x^(2*k))/(1 - x^k)]; p = Normal[p + O[x]^(nmax+1)]; s += x^(3*k)/(1 - x^k)/p;, {k, 1, nmax}]; Rest[CoefficientList[Series[s, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 16 2025 *)
  • PARI
    my(N=70, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(3*k)/prod(j=k, 2*k, 1-x^j)))) \\ Seiichi Manyama, May 14 2023

Formula

G.f.: Sum_{k>=1} x^(3*k)/Product_{j=k..2*k} (1-x^j).
a(n) ~ exp(Pi*sqrt(2*n/15)) / (5^(1/4)*sqrt(2*phi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 13 2025

A237828 Number of partitions of n such that 2*(least part) + 1 = greatest part.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 4, 6, 9, 10, 12, 17, 18, 22, 27, 31, 34, 42, 45, 53, 61, 66, 72, 86, 92, 103, 113, 125, 135, 154, 163, 180, 197, 213, 229, 257, 271, 294, 318, 346, 368, 404, 426, 463, 497, 532, 564, 616, 651, 700, 747, 798, 844, 912, 962, 1033, 1097, 1167, 1231, 1327, 1397, 1486, 1576, 1677
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Comments

Also, the number of partitions p of n such that if h = max(p), then h is an (h,0)-separator of p; for example, a(10) counts these 9 partitions: 181, 271, 361, 262, 451, 352, 343, 23131, 1212121. - Clark Kimberling, Mar 24 2014

Examples

			a(8) = 4 counts these partitions:  3311, 3221, 32111, 311111.
		

Crossrefs

Programs

  • Mathematica
    z = 64; q[n_] := q[n] = IntegerPartitions[n];
    Table[Count[q[n], p_ /; 3 Min[p] = = Max[p]], {n, z}]     (* A237825*)
    Table[Count[q[n], p_ /; 4 Min[p] = = Max[p]], {n, z}]     (* A237826 *)
    Table[Count[q[n], p_ /; 5 Min[p] = = Max[p]], {n, z}]     (* A237827 *)
    Table[Count[q[n], p_ /; 2 Min[p] + 1 = = Max[p]], {n, z}] (* A237828 *)
    Table[Count[q[n], p_ /; 2 Min[p] - 1 = = Max[p]], {n, z}] (* A237829 *)
    Table[Count[IntegerPartitions[n],?(2*Min[#]+1==Max[#]&)],{n,60}] (* _Harvey P. Dale, Jun 25 2017 *)
    kmax = 65;
    Sum[x^(3k+1)/Product[1-x^j, {j, k, 2k+1}], {k, 1, kmax}]/x + O[x]^kmax // CoefficientList[#, x]& (* Jean-François Alcover, May 30 2024, after Seiichi Manyama *)
    nmax = 100; p = 1; s = 0; Do[p = Simplify[p*(1 - x^(2*k - 1))*(1 - x^(2*k))/(1 - x^k)]; p = Normal[p + O[x]^(nmax + 1)]; s += x^(3*k + 1)/(1 - x^k)/(1 - x^(2*k + 1))/p;, {k, 1, nmax}]; Rest[CoefficientList[Series[s, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 18 2025 *)
  • PARI
    my(N=70, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(3*k+1)/prod(j=k, 2*k+1, 1-x^j)))) \\ Seiichi Manyama, May 17 2023

Formula

G.f.: Sum_{k>=1} x^(3*k+1)/Product_{j=k..2*k+1} (1-x^j). - Seiichi Manyama, May 17 2023
a(n) ~ sqrt(phi) * exp(Pi*sqrt(2*n/15)) / (sqrt(2)* 5^(1/4) * sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 20 2025

A237825 Number of partitions of n such that 3*(least part) = greatest part.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 5, 5, 8, 9, 13, 14, 18, 20, 27, 28, 35, 38, 49, 51, 61, 66, 81, 86, 102, 109, 130, 136, 161, 172, 202, 214, 245, 264, 305, 323, 369, 395, 452, 480, 544, 580, 657, 703, 786, 842, 947, 1008, 1124, 1205, 1340, 1432, 1589, 1702, 1886, 2014
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Examples

			a(7) = 3 counts these partitions:  331, 3211, 31111.
		

Crossrefs

Programs

  • Mathematica
    z = 64; q[n_] := q[n] = IntegerPartitions[n];
    Table[Count[q[n], p_ /; 3 Min[p] == Max[p]], {n, z}]     (* A237825*)
    Table[Count[q[n], p_ /; 4 Min[p] == Max[p]], {n, z}]     (* A237826 *)
    Table[Count[q[n], p_ /; 5 Min[p] == Max[p]], {n, z}]     (* A237827 *)
    Table[Count[q[n], p_ /; 2 Min[p] + 1 == Max[p]], {n, z}] (* A237828 *)
    Table[Count[q[n], p_ /; 2 Min[p] - 1 == Max[p]], {n, z}] (* A237829 *)
    Table[Count[IntegerPartitions[n],?(3#[[-1]]==#[[1]]&)],{n,60}] (* _Harvey P. Dale, May 14 2023 *)
    kmax = 57;
    Sum[x^(4 k)/Product[1 - x^j, {j, k, 3 k}], {k, 1, kmax}]/x + O[x]^kmax // CoefficientList[#, x]& (* Jean-François Alcover, May 30 2024, after Seiichi Manyama *)
  • PARI
    my(N=60, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/prod(j=k, 3*k, 1-x^j)))) \\ Seiichi Manyama, May 14 2023

Formula

G.f.: Sum_{k>=1} x^(4*k)/Product_{j=k..3*k} (1-x^j). - Seiichi Manyama, May 14 2023
a(n) ~ c * A376815^sqrt(n) / sqrt(n), where c = 0.23036554... - Vaclav Kotesovec, Jun 14 2025

A237826 Number of partitions of n such that 4*(least part) = greatest part.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 9, 12, 16, 20, 26, 31, 38, 47, 55, 67, 78, 92, 106, 126, 145, 167, 190, 219, 247, 288, 320, 366, 410, 466, 520, 591, 654, 739, 820, 924, 1018, 1148, 1263, 1415, 1562, 1740, 1911, 2136, 2342, 2607, 2859, 3169, 3469, 3849, 4208
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Examples

			a(8) = 3 counts these partitions:  431, 4211, 41111.
		

Crossrefs

Programs

  • Mathematica
    z = 64; q[n_] := q[n] = IntegerPartitions[n];
    Table[Count[q[n], p_ /; 3 Min[p] == Max[p]], {n, z}]     (* A237825*)
    Table[Count[q[n], p_ /; 4 Min[p] == Max[p]], {n, z}]     (* A237826 *)
    Table[Count[q[n], p_ /; 5 Min[p] == Max[p]], {n, z}]     (* A237827 *)
    Table[Count[q[n], p_ /; 2 Min[p] + 1 == Max[p]], {n, z}] (* A237828 *)
    Table[Count[q[n], p_ /; 2 Min[p] - 1 == Max[p]], {n, z}] (* A237829 *)
    Table[Count[IntegerPartitions[n],?(#[[1]]==4#[[-1]]&)],{n,60}] (* _Harvey P. Dale, Jun 15 2023 *)
    kmax = 55;
    Sum[x^(5k)/Product[1 - x^j, {j, k, 4 k}], {k, 1, kmax}]/x + O[x]^kmax // CoefficientList[#, x]& (* Jean-François Alcover, May 30 2024, after Seiichi Manyama *)
  • PARI
    my(N=60, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, N, x^(5*k)/prod(j=k, 4*k, 1-x^j)))) \\ Seiichi Manyama, May 14 2023

Formula

G.f.: Sum_{k>=1} x^(5*k)/Product_{j=k..4*k} (1-x^j). - Seiichi Manyama, May 14 2023
a(n) ~ c * d^sqrt(n) / sqrt(n), where d = 4.9219345... and c = 0.1699648... - Vaclav Kotesovec, Jun 19 2025

A363068 Number of partitions p of n such that (1/5)*max(p) is a part of p.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 14, 20, 26, 35, 44, 59, 73, 94, 117, 148, 181, 228, 277, 344, 418, 514, 621, 762, 917, 1116, 1342, 1624, 1945, 2348, 2803, 3366, 4012, 4798, 5700, 6798, 8052, 9565, 11305, 13383, 15771, 18618, 21880, 25745, 30187, 35414, 41414, 48461, 56531, 65967
Offset: 0

Views

Author

Seiichi Manyama, May 16 2023

Keywords

Comments

In general, for m>=1, if g.f. = Sum_{k>=0} x^((m+1)*k) / Product_{j=1..m*k} (1 - x^j), then a(n) ~ Gamma(1/m) * Pi^(1/m) * exp(Pi*sqrt(2*n/3)) / (m^2 * 2^((4*m+1)/(2*m)) * 3^((m+1)/(2*m)) * n^(1 + 1/(2*m))). - Vaclav Kotesovec, Jun 19 2025

Examples

			a(8) = 2 counts these partitions:  521, 5111.
		

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(6*k)/Product[1 - x^j, {j, 1, 5*k}], {k, 0, nmax}], {x, 0, nmax}], x]  (* Vaclav Kotesovec, Jun 18 2025 *)
    nmax = 60; p=1; s=1; Do[p=Expand[p*(1-x^(5*k))*(1-x^(5*k-1))*(1-x^(5*k-2))*(1-x^(5*k-3))*(1-x^(5*k-4))]; p=Take[p, Min[nmax+1, Exponent[p, x]+1, Length[p]]]; s+=x^(6*k)/p; , {k, 1, nmax}]; CoefficientList[Series[s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 18 2025 *)
  • PARI
    a(n) = sum(k=0, n\6, #partitions(n-6*k, 5*k));

Formula

G.f.: Sum_{k>=0} x^(6*k)/Product_{j=1..5*k} (1-x^j).
a(n) ~ Gamma(1/5) * Pi^(1/5) * exp(Pi*sqrt(2*n/3)) / (25 * 2^(21/10) * 3^(3/5) * n^(11/10)). - Vaclav Kotesovec, Jun 19 2025

A237829 Number of partitions of n such that 2*(least part) - 1 = greatest part.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 2, 2, 5, 3, 4, 5, 5, 6, 8, 6, 8, 10, 10, 10, 15, 12, 14, 17, 18, 20, 23, 21, 26, 29, 30, 31, 39, 38, 42, 46, 49, 52, 61, 60, 68, 74, 77, 83, 94, 95, 104, 112, 122, 128, 143, 144, 159, 172, 181, 192, 212, 219, 237, 253, 271, 285
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Examples

			a(8) = 3 counts these partitions:  53, 332, 11111111.
		

Crossrefs

Programs

  • Mathematica
    z = 64; q[n_] := q[n] = IntegerPartitions[n];
    Table[Count[q[n], p_ /; 3 Min[p] == Max[p]], {n, z}]     (* A237825*)
    Table[Count[q[n], p_ /; 4 Min[p] == Max[p]], {n, z}]     (* A237826 *)
    Table[Count[q[n], p_ /; 5 Min[p] == Max[p]], {n, z}]     (* A237827 *)
    Table[Count[q[n], p_ /; 2 Min[p] + 1 == Max[p]], {n, z}] (* A237828 *)
    Table[Count[q[n], p_ /; 2 Min[p] - 1 == Max[p]], {n, z}] (* A237829 *)
    (* Second program: *)
    kmax = 64;
    Sum[x^(3k-1)/Product[1-x^j, {j, k, 2k-1}], {k, 1, kmax}]/x+1+O[x]^kmax // CoefficientList[#, x]& (* Jean-François Alcover, May 30 2024, after Seiichi Manyama *)
    nmax = 100; p = 1; s = x; Do[p = Simplify[p*(1 - x^(2*k - 1))*(1 - x^(2*k))/(1 - x^k)]; p = Normal[p + O[x]^(nmax + 1)]; s += x^(3*k - 1)/(1 - x^k)*(1 - x^(2*k))/p;, {k, 1, nmax}]; Rest[CoefficientList[Series[s, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 18 2025 *)
  • PARI
    my(N=70, x='x+O('x^N)); Vec(x+sum(k=1, N, x^(3*k-1)/prod(j=k, 2*k-1, 1-x^j))) \\ Seiichi Manyama, May 17 2023

Formula

G.f.: x + Sum_{k>=1} x^(3*k-1)/Product_{j=k..2*k-1} (1-x^j). - Seiichi Manyama, May 17 2023
a(n) ~ exp(Pi*sqrt(2*n/15)) / (sqrt(2)* 5^(1/4) * phi^(3/2) * sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 20 2025

A363077 Number of partitions of n such that 5*(least part) + 1 = greatest part.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 12, 14, 21, 27, 37, 46, 63, 75, 97, 119, 149, 178, 222, 260, 317, 373, 447, 520, 620, 713, 839, 965, 1123, 1282, 1488, 1687, 1939, 2196, 2508, 2826, 3220, 3610, 4087, 4578, 5157, 5755, 6472, 7199, 8060, 8953, 9991, 11069, 12330, 13625, 15134, 16708, 18508
Offset: 1

Views

Author

Seiichi Manyama, May 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; p = 1; s = 0; Do[p = Simplify[p*(1 - x^(5*k - 4))*(1 - x^(5*k - 3))*(1 - x^(5*k - 2))*(1 - x^(5*k - 1))*(1 - x^(5*k))/(1 - x^k)]; p = Normal[p + O[x]^(nmax + 1)]; s += x^(6*k + 1)/(1 - x^k)/(1 - x^(5*k + 1))/p;, {k, 1, nmax}]; Rest[CoefficientList[Series[s, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 19 2025 *)
  • PARI
    my(N=60, x='x+O('x^N)); concat([0, 0, 0, 0, 0, 0], Vec(sum(k=1, N, x^(6*k+1)/prod(j=k, 5*k+1, 1-x^j))))

Formula

G.f.: Sum_{k>=1} x^(6*k+1)/Product_{j=k..5*k+1} (1-x^j).

A361459 Number of partitions p of n such that 5*min(p) is a part of p.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 12, 15, 23, 31, 44, 58, 82, 105, 142, 185, 244, 312, 409, 516, 664, 837, 1063, 1328, 1674, 2074, 2588, 3194, 3952, 4847, 5964, 7270, 8884, 10786, 13104, 15832, 19147, 23027, 27709, 33203, 39776, 47476, 56661, 67382, 80108, 94960, 112494, 132919, 156965
Offset: 1

Views

Author

Seiichi Manyama, May 17 2023

Keywords

Comments

From Vaclav Kotesovec, Jun 19 2025: (Start)
In general, for m>1, if g.f. = Sum_{k>=0} x^(m*k) / Product_{j>=k} (1 - x^j), then A000041(n) - a(n) ~ Pi * (m-1) * exp(Pi*sqrt(2*n/3)) / (3*2^(5/2)*n^(3/2)).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)) * (1 - (sqrt(3/2)/Pi + (m - 23/24)*Pi / sqrt(6)) / sqrt(n)). (End)

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, b(n, i+1)+b(n-i, i)))
        end:
    a:= n-> add(b(n-6*i, i), i=1..n/6):
    seq(a(n), n=1..60);  # Alois P. Heinz, May 17 2023
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i > n, 0, b[n, i+1] + b[n-i, i]]];
    a[n_] := Sum[b[n - 6 i, i], {i, 1, n/6}];
    Array[a, 60] (* Jean-François Alcover, May 30 2024, after Alois P. Heinz *)
  • PARI
    my(N=60, x='x+O('x^N)); concat([0, 0, 0, 0, 0], Vec(sum(k=1, N, x^(6*k)/prod(j=k, N, 1-x^j))))

Formula

G.f.: Sum_{k>=1} x^(6*k)/Product_{j>=k} (1-x^j).
From Vaclav Kotesovec, Jun 19 2025: (Start)
a(n) ~ exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*n) * (1 - (sqrt(3/2)/Pi + 121*Pi/(24*sqrt(6))) / sqrt(n)).
A000041(n) - a(n) ~ 5 * Pi * exp(Pi*sqrt(2*n/3)) / (3 * 2^(5/2) * n^(3/2)). (End)
Showing 1-8 of 8 results.