cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117105 Numbers that are the sum of three positive heptagonal numbers (A000566) in at least one way.

Original entry on oeis.org

3, 9, 15, 20, 21, 26, 32, 36, 37, 42, 43, 48, 53, 54, 57, 59, 63, 69, 70, 74, 75, 80, 83, 86, 89, 90, 91, 95, 96, 100, 102, 106, 107, 111, 114, 116, 117, 120, 122, 123, 126, 128, 131, 133, 137, 143, 144, 147, 148, 149, 150, 153, 154, 156, 162, 163, 164, 165
Offset: 1

Views

Author

Jonathan Vos Post, Apr 18 2006

Keywords

Comments

7 is the only prime heptagonal number. Primes which are sums of two positive heptagonal numbers include: {2, 19, 41, 73, 89, 113, 149, 167, 193, 223, 229, 269, 293, 337, 347, 367, 383, ...}. Primes which are sums of three positive heptagonal numbers include: {3, 37, 43, 53, 59, 83, 89, 107, 131, 137, 149, 163, 167, 173, 191, 197, 211, 227, 241, 251, 257, 263, 271, ...}.
By definition this does not contain any repeated terms. - N. J. A. Sloane, Aug 15 2020

Crossrefs

Programs

  • Mathematica
    With[{nn=10},Select[Union[Total/@Tuples[PolygonalNumber[7,Range[ nn]],3]], #<=PolygonalNumber[7,nn]-2&]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 16 2020 *)

Formula

{a(n)} = {A000566} + {A000566} + {A000566} = {a*(5*a-3)/2 + b*(5*b-3)/2 + c*(5*c-3)/2} \ {A000566}.

Extensions

Missing 106 and 131 added by Giovanni Resta, Jun 15 2016
Corrected (deleting duplicates) and extended by Harvey P. Dale, Aug 16 2020