cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117111 Sum of four positive heptagonal numbers A000566.

Original entry on oeis.org

4, 10, 16, 21, 22, 27, 28, 33, 37, 38, 39, 43, 44, 49, 50, 54, 55, 58, 60, 61, 64, 66, 70, 71, 72, 75, 76, 77, 81, 82, 84, 87, 88, 90, 91, 92, 93, 96, 97, 98, 101, 102, 103, 104, 107, 108, 109, 112, 113, 114, 115, 117, 118, 120, 121, 123, 124, 125, 127, 129, 130, 132
Offset: 1

Views

Author

Jonathan Vos Post, Apr 18 2006

Keywords

Comments

Fermat discovered, Gauss, Legendre and [1813] Cauchy proved that every integer is the sum of 7 heptagonal numbers (and there are some numbers which require all 7, the smallest being 13). 7 is the only prime heptagonal number. Primes which are sums of two positive heptagonal numbers include: {19, 41, 73, 89, 113, 149, 167, 193, 223, 229, 269, 293, 337, 347, 367, 383, 521, ...}. Primes which are sums of three positive heptagonal numbers include: {3, 37, 43, 53, 59, 83, 89, 107, 131, 137, 149, 163, 167, 173, 191, 197, 211, 227, 241, 251, 257, 263, 271, ...}. Primes which are sums of four positive heptagonal numbers include: {37, 43, 61, 71, 97, 101, 103, 107, 109, 113, 127, 149, 151, 167, 181, 191, 197, 199, 211, 223, 229, 239, 251, ...}.

Crossrefs

Programs

  • Mathematica
    Module[{upto=150,max},max=Ceiling[(3+Sqrt[9+40upto])/10];Select[Total/@
    Tuples[PolygonalNumber[7,Range[max]],4]//Union,#<=upto&]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 15 2016 *)

Formula

{a(n)} = {A000566} + {A000566} + {A000566} + {A000566} = {a*(5*a-3)/2 + b*(5*b-3)/2 + c*(5*c-3)/2 + d*(5*d-3)/2 such that every term is positive}.