cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117119 Number of partitions of 2*n into two odd prime powers.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 5, 6, 6, 6, 7, 8, 6, 9, 7, 6, 8, 7, 6, 8, 7, 7, 9, 8, 7, 9, 8, 7, 11, 9, 7, 12, 8, 7, 9, 9, 8, 10, 8, 9, 12, 11, 9, 12, 9, 8, 13, 9, 8, 13, 10, 11, 14, 11, 8, 13, 12, 10, 13, 9, 9, 16, 10, 11, 14, 10, 10, 15, 10, 9, 16, 12, 9, 16, 12, 11, 18
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 15 2006

Keywords

Comments

Conjecture: For all n, a(n) > 0; a(n) > A002375(n).

Examples

			a(1) = #{1+1} = 1; a(2) = #{1+3} = 1; a(3) = #{1+5, 3+3} = 2;
a(20) = #{3+37, 3^2+31, 11+29, 13+3^3, 17+23} = 5;
a(21) = #{1+41, 5+37, 11+31, 13+29, 17+5^2, 19+23} = 6.
		

Crossrefs

Cf. A061345.

Programs

  • Maple
    isA061345 := proc(n)
        if n = 1 then
            true;
        elif type(n,'even') then
            false;
        elif nops(numtheory[factorset](n)) = 1 then
            true;
        else
            false;
        end if;
    end proc:
    A117119 := proc(n)
        local a,j,i;
        a := 0 ;
        for i from 1 do
            j := 2*n-i ;
            if j < i then
                break;
            end if;
            if isA061345(i) and isA061345(j) then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc:
    seq(A117119(n),n=1..60) ; # R. J. Mathar, Jul 09 2016
  • Mathematica
    oppQ[n_] := n == 1 || OddQ[n] && PrimeNu[n] == 1; a[n_] := (k = 0; For[i = 1, True, i++, j = 2n - i; If[j < i, Break[]]; If[oppQ[i] && oppQ[j], k++] ]; k); Array[a, 100] (* Jean-François Alcover, Feb 13 2018 *)