A117119 Number of partitions of 2*n into two odd prime powers.
1, 1, 2, 2, 3, 3, 4, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 5, 6, 6, 6, 7, 8, 6, 9, 7, 6, 8, 7, 6, 8, 7, 7, 9, 8, 7, 9, 8, 7, 11, 9, 7, 12, 8, 7, 9, 9, 8, 10, 8, 9, 12, 11, 9, 12, 9, 8, 13, 9, 8, 13, 10, 11, 14, 11, 8, 13, 12, 10, 13, 9, 9, 16, 10, 11, 14, 10, 10, 15, 10, 9, 16, 12, 9, 16, 12, 11, 18
Offset: 1
Keywords
Examples
a(1) = #{1+1} = 1; a(2) = #{1+3} = 1; a(3) = #{1+5, 3+3} = 2; a(20) = #{3+37, 3^2+31, 11+29, 13+3^3, 17+23} = 5; a(21) = #{1+41, 5+37, 11+31, 13+29, 17+5^2, 19+23} = 6.
Links
- Eric Weisstein's World of Mathematics, Goldbach Conjecture
- Wikipedia, Goldbach's conjecture
- Wikipedia, Waring-Goldbach problem
- Index entries for sequences related to Goldbach conjecture
Crossrefs
Cf. A061345.
Programs
-
Maple
isA061345 := proc(n) if n = 1 then true; elif type(n,'even') then false; elif nops(numtheory[factorset](n)) = 1 then true; else false; end if; end proc: A117119 := proc(n) local a,j,i; a := 0 ; for i from 1 do j := 2*n-i ; if j < i then break; end if; if isA061345(i) and isA061345(j) then a := a+1 ; end if; end do: a ; end proc: seq(A117119(n),n=1..60) ; # R. J. Mathar, Jul 09 2016
-
Mathematica
oppQ[n_] := n == 1 || OddQ[n] && PrimeNu[n] == 1; a[n_] := (k = 0; For[i = 1, True, i++, j = 2n - i; If[j < i, Break[]]; If[oppQ[i] && oppQ[j], k++] ]; k); Array[a, 100] (* Jean-François Alcover, Feb 13 2018 *)
Comments