cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A006509 Cald's sequence: a(n+1) = a(n) - prime(n) if that value is positive and new, otherwise a(n) + prime(n) if new, otherwise 0; start with a(1)=1.

Original entry on oeis.org

1, 3, 6, 11, 4, 15, 2, 19, 38, 61, 32, 63, 26, 67, 24, 71, 18, 77, 16, 83, 12, 85, 164, 81, 170, 73, 174, 277, 384, 275, 162, 35, 166, 29, 168, 317, 468, 311, 148, 315, 142, 321, 140, 331, 138, 335, 136, 347, 124, 351, 122, 355, 116, 357, 106, 363, 100, 369, 98, 375, 94, 377, 84, 391, 80, 393, 76, 407, 70, 417, 68, 421, 62, 429, 56, 435, 52, 441, 44, 445, 36, 455, 34, 465, 898, 459, 902, 453, 910, 449, 912, 1379, 900, 413, 904, 405, 908, 399, 920, 397, 938, 1485, 928, 365, 934, 1505, 2082, 1495, 2088, 1489, 888, 281, 894, 1511, 892, 261, 0, 643, 1290, 637, 1296, 635, 1308, 631, 1314, 623, 1324, 615, 1334, 607, 1340
Offset: 1

Views

Author

Keywords

Comments

The differences between this sequence and A117128 ("Recamán transform of primes") are (i) the offset (0 there) and (ii) there the sum is used in the second case whether it has already occurred or not (so duplicates occur), while here a(n+1) = 0 if the sum already occurred (so there are no duplicates apart from the zeros). - M. F. Hasler, Mar 06 2024

References

  • F. Cald, Problem 356, Franciscan order, J. Rec. Math., 7 (No. 4, 1974), 318; 10 (No. 1, 1977-78), 62-64.
  • "Cald's Sequence", Popular Computing (Calabasas, CA), Vol. 4 (No. 41, Aug 1976), pp. 16-17.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005132, A093903, A112877 & A370951 (indices of zeros).
A111338 gives (conjecturally) the terms of the present sequence sorted into increasing order, and A111339 gives (conjecturally) the numbers missing from the present sequence.

Programs

  • Haskell
    a006509 n = a006509_list !! (n-1)
    a006509_list = 1 : f [1] a000040_list where
       f xs'@(x:_) (p:ps) | x' > 0 && x' `notElem` xs = x' : f (x':xs) ps
                          | x'' `notElem` xs          = x'' : f (x'':xs) ps
                          | otherwise                 = 0 : f (0:xs) ps
                          where x' = x - p; x'' = x + p
    -- Reinhard Zumkeller, Oct 17 2011
    
  • Maple
    M1:=500000; a:=array(0..M1); have:=array(0..M1); a[0]:=1;
    for n from 0 to M1 do have[n]:=0; od: have[0]:=1; have[1]:=1;
    M2:=2000; nmax:=M2; for n from 1 to M2 do p:=ithprime(n); i:=a[n-1]-p; j:=a[n-1]+p;
    if i >= 1 and have[i]=0 then a[n]:=i; have[i]:=1;
    elif j <= M1 and have[j]=0 then a[n]:=j; have[j]:=1;
    elif j <= M1 then a[n]:=0; else nmax:=n-1; break; fi; od:
    # To get A006509:
    [seq(a[n],n=0..M2)];
    # To get A112877 (off by 1 because of different offset in A006509):
    zzz:=[]; for n from 0 to nmax do if a[n]=0 then zzz:=[op(zzz),n]; fi; od: [seq(zzz[i],i=1..nops(zzz))];
  • Mathematica
    lst = {1}; f := Block[{b = Last@lst, p = Prime@ Length@lst}, If[b > p && !MemberQ[lst, b - p], AppendTo[lst, b - p], If[ !MemberQ[lst, b + p], AppendTo[lst, b + p], AppendTo[lst, 0]] ]]; Do[f, {n, 60}]; lst (* Robert G. Wilson v, Apr 25 2006 *)
  • PARI
    A006509_upto(N, U=0)=vector(N,i, N=if(i>1, my(p=prime(i-1)); if( N>p && !bittest(U,N-p), N-p, !bittest(U, N+p), N+p), 1); N && U += 1 << N; N) \\ M. F. Hasler, Mar 06 2024
  • Python
    from sympy import primerange, prime
    def aupton(terms):
      alst = [1]
      for n, pn in enumerate(primerange(1, prime(terms)+1), start=1):
        x, y = alst[-1] - pn, alst[-1] + pn
        if x > 0 and x not in alst: alst.append(x)
        elif y > 0 and y not in alst: alst.append(y)
        else: alst.append(0)
      return alst
    print(aupton(130)) # Michael S. Branicky, May 30 2021
    
  • Python
    from sympy import nextprime
    from itertools import islice
    def agen(): # generator of terms
        pn, an, aset = 2, 1, {1}
        while True:
            yield an
            an = m if (m:=an-pn) > 0 and m not in aset else p if (p:=an+pn) not in aset else 0
            aset.add(an)
            pn = nextprime(pn)
    print(list(islice(agen(), 131))) # Michael S. Branicky, Mar 07 2024
    

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jul 20 2001
Many more terms added by N. J. A. Sloane, Apr 20 2006, to show difference from A117128.
Entry revised by N. J. A. Sloane, Mar 06 2024

A112877 Zeros in Cald's sequence: positions k such that A006509(k) = 0.

Original entry on oeis.org

117, 199, 381, 427, 521, 721, 1151, 1997, 3625, 6607, 12269, 23209, 41133, 75441, 141209, 266969, 507701, 968373, 1851971, 3549473, 6817481, 13115259, 25267949, 48750929, 94173137, 182122379, 352587759, 683348381, 1325663485, 2419811401, 4551835269, 8705190801, 16798251617, 32575310493
Offset: 1

Views

Author

Klaus Brockhaus, Oct 24 2005

Keywords

Examples

			A006509(117) = 0 and A006509(k) > 0 for k < 117, so a(1) = 117.
		

Crossrefs

A370951 gives first differences.

Programs

  • Mathematica
    a[1] = 1; a[n_] := a[n] = Block[{b = a[n - 1], p = Prime[n - 1]}, If[ b - p > 0 && Position[t, b - p] == {}, b - p, If[ Position[t, b + p] == {}, b + p, 0]]]; t = {1}; Do[ AppendTo[t, a[n]], {n, 2, 270000}]; Flatten[ Position[t, 0]] (* Robert G. Wilson v, Oct 29 2005 *)
  • Python
    from itertools import count, islice
    from sympy import nextprime
    def A112877_gen(): # generator of terms
        a, aset, p = 1, {1}, 2
        for c in count(2):
            if (b:=a-p) > 0 and b not in aset:
                a = b
            elif (b:=a+p) not in aset:
                a = b
            else:
                a = 0
                yield c
            aset.add(a)
            p = nextprime(p)
    A112877_list = list(islice(A112877_gen(),10)) # Chai Wah Wu, Mar 04 2024

Extensions

a(15) and a(16) from Robert G. Wilson v, Oct 29 2005
a(17) and a(18) from Klaus Brockhaus, Jan 01 2006
a(19)-a(26) from Donovan Johnson, Feb 18 2010
a(27)-a(29) from Chai Wah Wu, Mar 04 2024
a(30)-a(34) from Martin Ehrenstein, Mar 07 2024 (see A370951)
More than the usual number of terms are shown in order to include the new terms from A370951. - N. J. A. Sloane, Mar 10 2024
Showing 1-2 of 2 results.