A117152 Sum of product of Fibonacci and triangular numbers.
0, 0, 1, 7, 25, 75, 195, 468, 1056, 2280, 4755, 9650, 19154, 37328, 71635, 135685, 254125, 471317, 866669, 1581620, 2866970, 5165630, 9256871, 16507092, 29304660, 51812160, 91264885, 160207603, 280340161, 489117135, 851054535
Offset: 0
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003
Programs
-
Mathematica
Binomial[n, 2]Fibonacci[n + 2] - n Fibonacci[n + 3] + Fibonacci[n + 5] - 5
-
PARI
a(n) = sum(k=2, n, k*(k-1)*fibonacci(k)/2); \\ Michel Marcus, Feb 28 2019
Formula
a(n) = Sum_{k=2..n} C(k,2)*F(k), where F(n) = A000045(n), the Fibonacci numbers and C(n, 2) = A000217(n-1), the triangular numbers, n(n-1)/2.
a(n) = C(n,2) F(n+2) - n F(n+3) + F(n+5) - 5.
G.f.: x^2(1 + 3x + x^3)/((1 - x)(1 - x - x^2)^3).
a(n)-a(n-1) = A086926(n). - R. J. Mathar, May 16 2025