cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117152 Sum of product of Fibonacci and triangular numbers.

Original entry on oeis.org

0, 0, 1, 7, 25, 75, 195, 468, 1056, 2280, 4755, 9650, 19154, 37328, 71635, 135685, 254125, 471317, 866669, 1581620, 2866970, 5165630, 9256871, 16507092, 29304660, 51812160, 91264885, 160207603, 280340161, 489117135, 851054535
Offset: 0

Views

Author

Mitch Harris, Feb 28 2006

Keywords

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003

Crossrefs

Programs

  • Mathematica
    Binomial[n, 2]Fibonacci[n + 2] - n Fibonacci[n + 3] + Fibonacci[n + 5] - 5
  • PARI
    a(n) = sum(k=2, n, k*(k-1)*fibonacci(k)/2); \\ Michel Marcus, Feb 28 2019

Formula

a(n) = Sum_{k=2..n} C(k,2)*F(k), where F(n) = A000045(n), the Fibonacci numbers and C(n, 2) = A000217(n-1), the triangular numbers, n(n-1)/2.
a(n) = C(n,2) F(n+2) - n F(n+3) + F(n+5) - 5.
G.f.: x^2(1 + 3x + x^3)/((1 - x)(1 - x - x^2)^3).
a(n)-a(n-1) = A086926(n). - R. J. Mathar, May 16 2025