A117158 Number of permutations avoiding the consecutive pattern 1234.
1, 1, 2, 6, 23, 111, 642, 4326, 33333, 288901, 2782082, 29471046, 340568843, 4263603891, 57482264322, 830335952166, 12793889924553, 209449977967081, 3630626729775362, 66429958806679686, 1279448352687538463, 25874432578888440471, 548178875969847203202
Offset: 0
Keywords
References
- F. N. David and D. E. Barton, Combinatorial Chance, Hafner, New York, 1962, pages 156-157.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..450 (terms n = 0..60 from Ray Chandler)
- A. Baxter, B. Nakamura, and D. Zeilberger, Automatic generation of theorems and proofs on enumerating consecutive Wilf-classes.
- Sergi Elizalde, Asymptotic enumeration of permutations avoiding generalized patterns, Adv. Appl. Math. 36 (2006), 138-155.
- Sergi Elizalde and Marc Noy, Consecutive patterns in permutations, Adv. Appl. Math. 30 (2003), 110-125.
- Steven Finch, Pattern-Avoiding Permutations. [Archived version]
- Steven Finch, Pattern-Avoiding Permutations. [Cached copy, with permission]
- Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory A 53 (1990), 257-285.
- Ira M. Gessel, Yan Zhuang, Counting permutations by alternating descents, arXiv:1408.1886 [math.CO], 2014. See displayed equation before Eq. (3) and set m=4. - _N. J. A. Sloane_, Aug 11 2014
- Kaarel Hänni, Asymptotics of descent functions, arXiv:2011.14360 [math.CO], Nov 29 2020, p. 14.
- Mingjia Yang, Doron Zeilberger, Increasing Consecutive Patterns in Words, arXiv:1805.06077 [math.CO], 2018.
- Mingjia Yang, An experimental walk in patterns, partitions, and words, Ph. D. Dissertation, Rutgers University (2020).
Crossrefs
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, `if`(t<2, add(b(u+j-1, o-j, t+1), j=1..o), 0)+ add(b(u-j, o+j-1, 0), j=1..u)) end: a:= n-> b(n, 0, 0): seq(a(n), n=0..30); # Alois P. Heinz, Oct 07 2013
-
Mathematica
a[n_]:=Coefficient[Series[2/(Cos[x]-Sin[x]+Exp[ -x]),{x,0,30}],x^n]*n! (* second program: *) b[u_, o_, t_] := b[u, o, t] = If[u+o==0, 1, If[t<2, Sum[b[u+j-1, o-j, t+1], {j, 1, o}], 0] + Sum[b[u-j, o+j-1, 0], {j, 1, u}]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 23 2015, after Alois P. Heinz *)
Formula
From Sergei N. Gladkovskii, Nov 30 2011: (Start)
E.g.f.: 2/(exp(-x) + cos(x) - sin(x)) = 1/W(0) with continued fraction
W(k) = 1 + (x^(2*k))/(f + f*x/(4*k + 1 - x - (4*k + 1)*b/R)), where R := x^(2*k) + b -(x^(4*k+1))/(c + (x^(2*k+1)) + x*c/T); T := 4*k + 3 - x - (4*k + 3)*d/(d +(x^(2*k+1))/W(k+1)), and
f := (4*k)!/(2*k)!; b := (4*k + 1)!/(2*k + 1)!; c := (4*k + 2)!/(2*k + 1)!; and d :=(4*k + 3)!/(2*k + 2)!. (End)
a(n) ~ n! / (sin(r)*r^(n+1)), where r = 1.0384156372665563... is the root of the equation exp(-r) + cos(r) = sin(r). - Vaclav Kotesovec, Dec 11 2013
Comments