A117199 Expansion of 1/(1-x^2) + x/(1-x^3) + x^2/(1-x^4).
1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 2, 0, 2, 1, 1
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (-1,-1,0,1,1,1).
Programs
-
Mathematica
CoefficientList[ Series[1/(1 - x^2) + x/(1 - x^3) + x^2/(1 - x^4), {x, 0, 105}], x] (* Robert G. Wilson v, Mar 14 2006 *) LinearRecurrence[{-1,-1,0,1,1,1},{1,1,2,0,2,0},120] (* or *) PadRight[ {},120,{1,1,2,0,2,0,2,1,1,0,3,0}] (* Harvey P. Dale, Dec 22 2013 *)
Formula
G.f.: (1+2x+4x^2+3x^3+3x^4)/(1+x+x^2-x^4-x^5-x^6).
a(n) = - a(n-1) - a(n-2) + a(n-4) + a(n-5) + a(n-6). - Wesley Ivan Hurt, Jun 11 2023
Extensions
More terms from Robert G. Wilson v, Mar 14 2006
Comments