cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117202 Binomial transform of n*F(n).

Original entry on oeis.org

0, 1, 4, 15, 52, 170, 534, 1631, 4880, 14373, 41810, 120406, 343884, 975325, 2749852, 7713435, 21540304, 59917826, 166094370, 458998523, 1264919720, 3477182961, 9536877614, 26102772910, 71309161752, 194468551225, 529490287924
Offset: 0

Views

Author

Paul Barry, Mar 02 2006

Keywords

Comments

Binomial transform of A045925.
Number of acyclic subgraphs of the wheel graph W_n (on n+1 vertices) with exactly n-1 edges. - Emil R. Vaughan, Jun 12 2007
Equivalently, number of two-component spanning forests of the wheel graph W_n (on n+1 vertices). - Harry Richman, Jul 31 2023
Starting (1, 4, 15, 52, ...) = binomial transform of A136376. - Gary W. Adamson, Sep 03 2008

Crossrefs

Cf. A136376.
Cf. A004146 (number of spanning trees of wheel graph).

Programs

  • Mathematica
    Table[n Fibonacci[2n-1],{n,0,26}] (* or *) Table[Sum[Fibonacci[2k]*BernoulliB[2n-2k]*Binomial[2n,2k],{k,1,n}],{n,0,26}] (* or *) CoefficientList[Series[x(1-2x+2x^2)/(1-3x+x^2)^2 ,{x,0,26}],x] (* Indranil Ghosh, Feb 26 2017 *)
  • PARI
    a(n) = n*fibonacci(2*n-1); \\ Indranil Ghosh, Feb 26 2017
    
  • PARI
    concat(0, Vec(x*(1-2*x+2*x^2) / (1-3*x+x^2)^2 + O(x^30))) \\ Colin Barker, Feb 26 2017

Formula

G.f.: x*(1-2x+2x^2)/(1-3x+x^2)^2.
a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3)-a(n-4).
a(n) = Sum_{k=0..n} C(n,k)*k*F(k).
From Benoit Cloitre, Nov 29 2006: (Start)
a(n) = Sum_{k=1..n} F(2k)*B(2n-2k)*binomial(2n,2k) where F=Fibonacci numbers and B=Bernoulli numbers;
a(n) = n*F(2n-1). (End)
a(n) = (2^(-1-n)*(-(-5+sqrt(5))*(3+sqrt(5))^n + (3-sqrt(5))^n*(5+sqrt(5)))*n) / 5. - Colin Barker, Feb 26 2017
a(n) = (1/sqrt(5)) * n * (((1 + sqrt(5)) / 2)^(2*n-1) - ((1 - sqrt(5)) / 2)^(2*n-1)). - Harry Richman, Jul 31 2023
a(n) = round((1/sqrt(5)) * n * phi^(2n-1)), where phi = (1+sqrt(5))/2 is the golden ratio A001622. - Harry Richman, Jul 31 2023