cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117215 Number of divisors of x^n-1 having the maximal height A114536(n).

Original entry on oeis.org

2, 4, 4, 8, 4, 2, 4, 16, 8, 2, 4, 2, 4, 2, 1, 32, 4, 14, 4, 2, 1, 2, 4, 20, 8, 2, 16, 2, 4, 2, 4, 64, 1, 2, 1, 18, 4, 2, 1, 2, 4, 2, 4, 2, 2, 2, 4, 2, 8, 14, 1, 2, 4, 70, 1, 2, 1, 2, 4, 2, 4, 2, 1, 128, 1, 2, 4, 2, 1, 2, 4, 10, 4, 2, 8, 2, 1, 2, 4, 4, 32, 2, 4, 2, 1, 2, 1, 2, 4, 2, 1, 2, 1, 2, 1, 32, 4, 14
Offset: 1

Views

Author

T. D. Noe, Mar 03 2006

Keywords

Comments

Let p be a prime. Then a(p)=4 because the divisors are x^p-1, x^(p-1)+x^(p-2)+...+1, x-1 and 1. Similarly, a(p^k)=2^(k+1). For n=p*2^k, a(n)=2. For odd primes p and q, a(pq)=1. Conjectures: if n is odd and squarefree, then a(n)=1; if n/2^k is odd and squarefree for k>0, then a(n)=2. All the divisors of x^n-1 are products of cyclotomic polynomials cyclo(d) for various d. When n is the product of distinct odd primes p1..pk, it appears that each cyclotomic index has the form d=p1^e1...pk^ek, where the ei are either 0 or 1 and sum(ei) is odd.

Examples

			a(6)=2 because x^3+2x^2+2x+1 and x^3-2x^2+2x-1 both divide x^6-1. In fact, their product is x^6-1.
		

Crossrefs

Cf. A114536.

Programs

  • Mathematica
    cyc[n_] := cyc[n] = Cyclotomic[n,x];
    PolyHeight[p_] := Max[Abs[CoefficientList[p,x]]];
    Table[sd=Subsets[Divisors[n]]; t=Table[PolyHeight[Expand[Product[ cyc[sd[[i,j]]], {j,Length[sd[[i]]]}]]], {i,Length[sd]}]; Length[ Position[t, Max[t]]], {n,105}]
  • PARI
    prod_by_bits(bits, fs) = { my(m=1,i=1); while(bits>0, if((bits%2),m *= fs[i]); i++; bits >>= 1); (m); };
    A117215(n) = { my(fs=factor('x^n - 1)[,1],m=0,d,mds=0,k); for(b=0,(2^#fs)-1,d = prod_by_bits(b,fs); k = 0; for(j=0,poldegree(d),k = max(k,abs(polcoeff(d,j)))); if(k==m, mds++, if(k>m, mds=1; m = k))); (mds); }; \\ Antti Karttunen, Jul 01 2018