cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117222 Number of partitions of 3-smooth numbers into 3-smooth numbers.

Original entry on oeis.org

1, 2, 3, 5, 10, 18, 23, 53, 128, 194, 586, 947, 2070, 3667, 16762, 33036, 93402, 200626, 445869, 1517300, 3715025, 14526494, 39369076, 111448616, 541299314, 1713653236, 5690596129, 9832997667, 35075665070, 131672592907, 973547058482, 4162255238584, 18810021557460
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 04 2006

Keywords

Crossrefs

Programs

  • Mathematica
    is[n_] := n/2^IntegerExponent[n, 2]/3^IntegerExponent[n, 3] == 1;
    MkS[n_] := Module[{A = {}, i = 0}, While[Length[A] < n, i++; If[is[i], AppendTo[A, i]]]; A];
    seq[n_] := Module[{A = MkS[n], p}, p = 1/Product[1 - x^A[[i]] + O[x]^(1 + A[[Length[A]]]), {i, Length[A]}] // Normal; Table[Coefficient[p, x, A[[i]]], {i, Length[A]}]];
    seq[33] (* Jean-François Alcover, Oct 13 2021, after Andrew Howroyd *)
  • PARI
    \\ here is(n) is test for A003586 inclusion.
    is(n)={forprime(p=2, 3, n/=p^valuation(n,p)); n==1}
    MkS(n)={my(A=List(), i=0); while(#AAndrew Howroyd, Jan 02 2020

Formula

a(n) = A105420(A003586(n)).

Extensions

Terms a(23) and beyond from Andrew Howroyd, Jan 02 2020