A117222 Number of partitions of 3-smooth numbers into 3-smooth numbers.
1, 2, 3, 5, 10, 18, 23, 53, 128, 194, 586, 947, 2070, 3667, 16762, 33036, 93402, 200626, 445869, 1517300, 3715025, 14526494, 39369076, 111448616, 541299314, 1713653236, 5690596129, 9832997667, 35075665070, 131672592907, 973547058482, 4162255238584, 18810021557460
Offset: 1
Keywords
Links
- David A. Corneth, Table of n, a(n) for n = 1..200 (first 100 terms from Andrew Howroyd)
Programs
-
Mathematica
is[n_] := n/2^IntegerExponent[n, 2]/3^IntegerExponent[n, 3] == 1; MkS[n_] := Module[{A = {}, i = 0}, While[Length[A] < n, i++; If[is[i], AppendTo[A, i]]]; A]; seq[n_] := Module[{A = MkS[n], p}, p = 1/Product[1 - x^A[[i]] + O[x]^(1 + A[[Length[A]]]), {i, Length[A]}] // Normal; Table[Coefficient[p, x, A[[i]]], {i, Length[A]}]]; seq[33] (* Jean-François Alcover, Oct 13 2021, after Andrew Howroyd *)
-
PARI
\\ here is(n) is test for A003586 inclusion. is(n)={forprime(p=2, 3, n/=p^valuation(n,p)); n==1} MkS(n)={my(A=List(), i=0); while(#A
Andrew Howroyd, Jan 02 2020
Extensions
Terms a(23) and beyond from Andrew Howroyd, Jan 02 2020