A117244 Single (or isolated or non-twin) primes (A007510) that are not Chen primes (A109611).
79, 97, 163, 173, 223, 277, 331, 367, 373, 383, 397, 439, 457, 547, 593, 607, 613, 673, 691, 709, 727, 733, 739, 757, 773, 853, 907, 929, 967, 997, 1013, 1069, 1087, 1103, 1123, 1129, 1171, 1181, 1213, 1223, 1237, 1249, 1307, 1373, 1423, 1433, 1447, 1493
Offset: 1
Keywords
Examples
79 is single prime, but not Chen prime, since 79 -2 = 77 = 7*11 is composite, and 79 + 2 = 81 = 3^4 is neither prime nor semiprime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isA001358 := proc(n) numtheory[bigomega](n) = 2 ; end proc: isA109611 := proc(n) if isprime(n) then isprime(n+2) or isA001358(n+2) ; else false; end if; end proc: isA007510 := proc(n) if isprime(n) then not isprime(n-2) and not isprime(n+2) ; else false; end if ; end proc: isA117244 := proc(n) isA007510(n) and not isA109611(n) ; end proc: for n from 1 to 4000 do if isA117244(n) then printf("%d,",n) ; fi; end do ; # R. J. Mathar, Dec 09 2009
-
Mathematica
Select[Range[1500], PrimeQ[#] && !PrimeQ[#-2] && PrimeOmega[#+2] > 2 &] (* Amiram Eldar, Oct 19 2021 *)
-
PARI
isok(p) = isprime(p) && !isprime(p-2) && !isprime(p+2) && (bigomega(p+2) > 2); \\ Michel Marcus, Oct 19 2021
Extensions
Terms beyond 397 from R. J. Mathar, Dec 09 2009
Offset corrected by Amiram Eldar, Oct 19 2021