cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117244 Single (or isolated or non-twin) primes (A007510) that are not Chen primes (A109611).

Original entry on oeis.org

79, 97, 163, 173, 223, 277, 331, 367, 373, 383, 397, 439, 457, 547, 593, 607, 613, 673, 691, 709, 727, 733, 739, 757, 773, 853, 907, 929, 967, 997, 1013, 1069, 1087, 1103, 1123, 1129, 1171, 1181, 1213, 1223, 1237, 1249, 1307, 1373, 1423, 1433, 1447, 1493
Offset: 1

Views

Author

Jani Melik, Apr 22 2006

Keywords

Examples

			79 is single prime, but not Chen prime, since 79 -2 = 77 = 7*11 is composite, and 79 + 2 = 81 = 3^4 is neither prime nor semiprime.
		

Crossrefs

Programs

  • Maple
    isA001358 := proc(n) numtheory[bigomega](n) = 2 ; end proc: isA109611 := proc(n) if isprime(n) then isprime(n+2) or isA001358(n+2) ; else false; end if; end proc: isA007510 := proc(n) if isprime(n) then not isprime(n-2) and not isprime(n+2) ; else false; end if ; end proc: isA117244 := proc(n) isA007510(n) and not isA109611(n) ; end proc: for n from 1 to 4000 do if isA117244(n) then printf("%d,",n) ; fi; end do ; # R. J. Mathar, Dec 09 2009
  • Mathematica
    Select[Range[1500], PrimeQ[#] && !PrimeQ[#-2] && PrimeOmega[#+2] > 2 &] (* Amiram Eldar, Oct 19 2021 *)
  • PARI
    isok(p) = isprime(p) && !isprime(p-2) && !isprime(p+2) && (bigomega(p+2) > 2); \\ Michel Marcus, Oct 19 2021

Extensions

Terms beyond 397 from R. J. Mathar, Dec 09 2009
Offset corrected by Amiram Eldar, Oct 19 2021