A117256 Triangle T, read by rows, where matrix power T^5 has powers of 5 in the secondary diagonal: [T^5](n+1,n) = 5^(n+1), with all 1's in the main diagonal and zeros elsewhere.
1, 1, 1, -10, 5, 1, 750, -250, 25, 1, -328125, 93750, -6250, 125, 1, 779296875, -205078125, 11718750, -156250, 625, 1, -9741210937500, 2435302734375, -128173828125, 1464843750, -3906250, 3125, 1, 630569458007812500, -152206420898437500, 7610321044921875
Offset: 0
Examples
Triangle T begins: 1; 1,1; -10,5,1; 750,-250,25,1; -328125,93750,-6250,125,1; 779296875,-205078125,11718750,-156250,625,1; -9741210937500,2435302734375,-128173828125,1464843750,-3906250,3125,1; Matrix power T^5 has powers of 5 in the 2nd diagonal: 1; 5,1; 0,25,1; 0,0,125,1; 0,0,0,625,1; 0,0,0,0,3125,1; ...
Crossrefs
Programs
-
PARI
{T(n,k)=local(m=1,p=5,q=5,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
Formula
T(n,k) = A117257(n-k)*5^((n-k)*k). T(n,k) = (-1)^(n-k)*5^(n*(n-1)/2-k*(k-1)/2)/(n-k)!*prod_{j=0..n-k-1}(5*j-1) for n>k>=0, with T(n,n) = 1.
Comments