A117262 Triangle T, read by rows, where matrix inverse T^-1 has -3^n in the secondary diagonal: [T^-1](n+1,n) = -3^n, with all 1's in the main diagonal and zeros elsewhere.
1, 1, 1, 3, 3, 1, 27, 27, 9, 1, 729, 729, 243, 27, 1, 59049, 59049, 19683, 2187, 81, 1, 14348907, 14348907, 4782969, 531441, 19683, 243, 1, 10460353203, 10460353203, 3486784401, 387420489, 14348907, 177147, 729, 1
Offset: 0
Examples
Triangle T begins: 1; 1,1; 3,3,1; 27,27,9,1; 729,729,243,27,1; 59049,59049,19683,2187,81,1; 14348907,14348907,4782969,531441,19683,243,1; 10460353203,10460353203,3486784401,387420489,14348907,177147,729,1; Matrix inverse T^-1 has -3^n in the 2nd diagonal: 1, -1,1, 0,-3,1, 0,0,-9,1, 0,0,0,-27,1, 0,0,0,0,-81,1, 0,0,0,0,0,-243,1, ...
Crossrefs
Programs
-
PARI
{T(n,k)=local(m=1,p=-1,q=3,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
Formula
T(n,k) = 3^(n*(n-1)/2 - k*(k-1)/2).
Comments