A117263
Row sums of triangle A117262; also, self-convolution of A117264.
Original entry on oeis.org
1, 2, 7, 64, 1729, 140050, 34032151, 24809438080, 54258241080961, 355988319732185122, 7006918097288599756327, 413751506726794527011353024, 73294838162131470076480154142529
Offset: 0
A117260
Triangle T, read by rows, where matrix inverse T^-1 has -2^n in the secondary diagonal: [T^-1](n+1,n) = -2^n, with all 1's in the main diagonal and zeros elsewhere.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 8, 8, 4, 1, 64, 64, 32, 8, 1, 1024, 1024, 512, 128, 16, 1, 32768, 32768, 16384, 4096, 512, 32, 1, 2097152, 2097152, 1048576, 262144, 32768, 2048, 64, 1, 268435456, 268435456, 134217728, 33554432, 4194304, 262144, 8192, 128, 1
Offset: 0
Triangle T begins:
1;
1,1;
2,2,1;
8,8,4,1;
64,64,32,8,1;
1024,1024,512,128,16,1;
32768,32768,16384,4096,512,32,1;
2097152,2097152,1048576,262144,32768,2048,64,1;
268435456,268435456,134217728,33554432,4194304,262144,8192,128,1;
Matrix inverse T^-1 has -2^n in the 2nd diagonal:
1,
-1,1,
0,-2,1,
0,0,-4,1,
0,0,0,-8,1,
0,0,0,0,-16,1,
0,0,0,0,0,-32,1,
...
-
T := (n, k) -> 2^(((n + k - 1)*(n - k))/2):
seq(seq(T(n, k), k = 0..n), n = 0..8); # Peter Luschny, Dec 31 2024
-
Flatten[Table[2^((n(n-1))/2-(k(k-1))/2),{n,0,10},{k,0,n}]] (* Harvey P. Dale, Sep 19 2013 *)
-
{T(n,k)=local(m=1,p=-1,q=2,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
A117250
Triangle T, read by rows, where matrix power T^2 has powers of 2 in the secondary diagonal: [T^2](n+1,n) = 2^(n+1), with all 1's in the main diagonal and zeros elsewhere.
Original entry on oeis.org
1, 1, 1, -1, 2, 1, 4, -4, 4, 1, -40, 32, -16, 8, 1, 896, -640, 256, -64, 16, 1, -43008, 28672, -10240, 2048, -256, 32, 1, 4325376, -2752512, 917504, -163840, 16384, -1024, 64, 1, -899678208, 553648128, -176160768, 29360128, -2621440, 131072, -4096, 128, 1
Offset: 0
Triangle T begins:
1;
1,1;
-1,2,1;
4,-4,4,1;
-40,32,-16,8,1;
896,-640,256,-64,16,1;
-43008,28672,-10240,2048,-256,32,1;
4325376,-2752512,917504,-163840,16384,-1024,64,1;
-899678208,553648128,-176160768,29360128,-2621440,131072,-4096,128,1;
Matrix square T^2 has powers of 2 in the 2nd diagonal:
1;
2,1;
0,4,1;
0,0,8,1;
0,0,0,16,1;
0,0,0,0,32,1;
0,0,0,0,0,64,1; ...
Cf.
A117251 (column 0); variants:
A117252 (p=q=3),
A117254 (p=q=4),
A117256 (p=q=5),
A117258 (p=2, q=4),
A117260 (p=-1, q=2),
A117262 (p=-1, q=3),
A117265 (p=-2, q=2).
-
{T(n,k)=local(m=1,p=2,q=2,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
A117252
Triangle T, read by rows, where matrix power T^3 has powers of 3 in the secondary diagonal: [T^3](n+1,n) = 3^(n+1), with all 1's in the main diagonal and zeros elsewhere.
Original entry on oeis.org
1, 1, 1, -3, 3, 1, 45, -27, 9, 1, -2430, 1215, -243, 27, 1, 433026, -196830, 32805, -2187, 81, 1, -245525742, 105225318, -15943230, 885735, -19683, 243, 1, 434685788658, -178988265918, 25569752274, -1291401630, 23914845, -177147, 729, 1
Offset: 0
Triangle T begins:
1;
1,1;
-3,3,1;
45,-27,9,1;
-2430,1215,-243,27,1;
433026,-196830,32805,-2187,81,1;
-245525742,105225318,-15943230,885735,-19683,243,1;
434685788658,-178988265918,25569752274,-1291401630,23914845,-177147,729,1;
Matrix cube T^3 has powers of 3 in the 2nd diagonal:
1;
3,1;
0,9,1;
0,0,27,1;
0,0,0,81,1;
0,0,0,0,243,1;
0,0,0,0,0,729,1; ...
Cf.
A117253 (column 0); variants:
A117250 (p=q=2),
A117254 (p=q=4),
A117256 (p=q=5),
A117258 (p=2, q=4),
A117260 (p=-1, q=2),
A117262 (p=-1, q=3),
A117265 (p=-2, q=2).
-
{T(n,k)=local(m=1,p=3,q=3,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
A117254
Triangle T, read by rows, where matrix power T^4 has powers of 4 in the secondary diagonal: [T^4](n+1,n) = 4^(n+1), with all 1's in the main diagonal and zeros elsewhere.
Original entry on oeis.org
1, 1, 1, -6, 4, 1, 224, -96, 16, 1, -39424, 14336, -1536, 64, 1, 30277632, -10092544, 917504, -24576, 256, 1, -98180268032, 31004295168, -2583691264, 58720256, -393216, 1024, 1, 1321338098679808, -402146377859072, 31748398252032, -661424963584, 3758096384, -6291456, 4096, 1
Offset: 0
Triangle T begins:
1;
1,1;
-6,4,1;
224,-96,16,1;
-39424,14336,-1536,64,1;
30277632,-10092544,917504,-24576,256,1;
-98180268032,31004295168,-2583691264,58720256,-393216,1024,1; ...
Matrix power T^4 has powers of 4 in the 2nd diagonal:
1;
4,1;
0,16,1;
0,0,64,1;
0,0,0,256,1;
0,0,0,0,1024,1;
0,0,0,0,0,4096,1; ...
Cf.
A117255 (column 0); variants:
A117250 (p=q=2),
A117252 (p=q=3),
A117256 (p=q=5),
A117258 (p=2, q=4),
A117260 (p=-1, q=2),
A117262 (p=-1, q=3),
A117265 (p=-2, q=2).
-
{T(n,k)=local(m=1,p=4,q=4,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
A117256
Triangle T, read by rows, where matrix power T^5 has powers of 5 in the secondary diagonal: [T^5](n+1,n) = 5^(n+1), with all 1's in the main diagonal and zeros elsewhere.
Original entry on oeis.org
1, 1, 1, -10, 5, 1, 750, -250, 25, 1, -328125, 93750, -6250, 125, 1, 779296875, -205078125, 11718750, -156250, 625, 1, -9741210937500, 2435302734375, -128173828125, 1464843750, -3906250, 3125, 1, 630569458007812500, -152206420898437500, 7610321044921875
Offset: 0
Triangle T begins:
1;
1,1;
-10,5,1;
750,-250,25,1;
-328125,93750,-6250,125,1;
779296875,-205078125,11718750,-156250,625,1;
-9741210937500,2435302734375,-128173828125,1464843750,-3906250,3125,1;
Matrix power T^5 has powers of 5 in the 2nd diagonal:
1;
5,1;
0,25,1;
0,0,125,1;
0,0,0,625,1;
0,0,0,0,3125,1; ...
Cf.
A117257 (column 0); variants:
A117250 (p=q=2),
A117252 (p=q=3),
A117254 (p=q=4),
A117258 (p=2, q=4),
A117260 (p=-1, q=2),
A117262 (p=-1, q=3),
A117265 (p=-2, q=2).
-
{T(n,k)=local(m=1,p=5,q=5,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
A117258
Triangle T, read by rows, where matrix power T^2 has 2*4^n in the secondary diagonal: [T^2](n+1,n) = 2*4^n, with all 1's in the main diagonal and zeros elsewhere.
Original entry on oeis.org
1, 1, 1, -2, 4, 1, 32, -32, 16, 1, -2560, 2048, -512, 64, 1, 917504, -655360, 131072, -8192, 256, 1, -1409286144, 939524096, -167772160, 8388608, -131072, 1024, 1, 9070970929152, -5772436045824, 962072674304, -42949672960, 536870912, -2097152, 4096, 1
Offset: 0
Triangle T begins:
1;
1,1;
-2,4,1;
32,-32,16,1;
-2560,2048,-512,64,1;
917504,-655360,131072,-8192,256,1;
-1409286144,939524096,-167772160,8388608,-131072,1024,1;
Matrix square T^2 has 2*4^n in the 2nd diagonal:
1,
2,1,
0,8,1,
0,0,32,1,
0,0,0,128,1,
0,0,0,0,512,1, ...
-
{T(n,k)=local(m=1,p=2,q=4,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
A117265
Triangle T, read by rows, where matrix power T^-2 has -2^(n+1) in the secondary diagonal: [T^-2](n+1,n) = -2^(n+1), with all 1's in the main diagonal and zeros elsewhere.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 20, 12, 4, 1, 280, 160, 48, 8, 1, 8064, 4480, 1280, 192, 16, 1, 473088, 258048, 71680, 10240, 768, 32, 1, 56229888, 30277632, 8257536, 1146880, 81920, 3072, 64, 1, 13495173120, 7197425664, 1937768448, 264241152, 18350080, 655360
Offset: 0
Triangle T begins:
1;
1,1;
3,2,1;
20,12,4,1;
280,160,48,8,1;
8064,4480,1280,192,16,1;
473088,258048,71680,10240,768,32,1;
56229888,30277632,8257536,1146880,81920,3072,64,1;
13495173120,7197425664,1937768448,264241152,18350080,655360,12288,128,1;
Matrix inverse square T^-2 has -2^(n+1) in the 2nd diagonal:
1;
-2,1;
0,-4,1;
0,0,-8,1;
0,0,0,-16,1;
0,0,0,0,-32,1;
0,0,0,0,0,-64,1; ...
Cf.
A086229 (column 0),
A117266 (row sums); variants:
A117250 (p=q=2),
A117252 (p=q=3),
A117254 (p=q=4),
A117256 (p=q=5),
A117258 (p=2, q=4),
A117260 (p=-1, q=2),
A117262 (p=-1, q=3).
-
{T(n,k)=local(m=1,p=-2,q=2,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
Showing 1-8 of 8 results.
Comments