cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A117264 Self-convolution square-root of A117263.

Original entry on oeis.org

1, 1, 3, 29, 831, 69107, 16944055, 12387543565, 27116679815367, 177967005474840987, 3503280999913078429261, 206872249547698485286567247, 36647212198301159763279385189667
Offset: 0

Views

Author

Paul D. Hanna, Mar 14 2006

Keywords

Programs

  • PARI
    {a(n)=local(A2=vector(n+1,m,sum(k=0,m-1,3^((m-k-1)*(m+k-2)/2))));Vec(Ser(A2)^(1/2))[n+1]}

A117262 Triangle T, read by rows, where matrix inverse T^-1 has -3^n in the secondary diagonal: [T^-1](n+1,n) = -3^n, with all 1's in the main diagonal and zeros elsewhere.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 27, 27, 9, 1, 729, 729, 243, 27, 1, 59049, 59049, 19683, 2187, 81, 1, 14348907, 14348907, 4782969, 531441, 19683, 243, 1, 10460353203, 10460353203, 3486784401, 387420489, 14348907, 177147, 729, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 14 2006

Keywords

Comments

More generally, if a lower triangular matrix T to the power p is given by: [T^p](n,k) = C(r,n-k)*p^(n-k)*q^(n*(n-1)/2-k*(k-1)/2) then, for all m, [T^m](n,k) = [prod_{j=0..n-k-1}(m*r-p*j)]/(n-k)!*q^(n*(n-1)/2-k*(k-1)/2) for n>k>=0, with T(n,n) = 1. This triangle results when m=1, p=-1, q=3, r=1.

Examples

			Triangle T begins:
1;
1,1;
3,3,1;
27,27,9,1;
729,729,243,27,1;
59049,59049,19683,2187,81,1;
14348907,14348907,4782969,531441,19683,243,1;
10460353203,10460353203,3486784401,387420489,14348907,177147,729,1;
Matrix inverse T^-1 has -3^n in the 2nd diagonal:
1,
-1,1,
0,-3,1,
0,0,-9,1,
0,0,0,-27,1,
0,0,0,0,-81,1,
0,0,0,0,0,-243,1, ...
		

Crossrefs

Cf. A047656 (column 0), A117263 (row sums); variants: A117250 (p=q=2), A117252 (p=q=3), A117254 (p=q=4), A117256 (p=q=5), A117258 (p=2, q=4), A117260 (p=-1, q=2), A117265 (p=-2, q=2).

Programs

  • PARI
    {T(n,k)=local(m=1,p=-1,q=3,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}

Formula

T(n,k) = 3^(n*(n-1)/2 - k*(k-1)/2).

A117261 Row sums of triangle A117260.

Original entry on oeis.org

1, 2, 5, 21, 169, 2705, 86561, 5539905, 709107841, 181531607297, 92944182936065, 95174843326530561, 194918079132734588929, 798384452127680876253185, 6540365431829961738266091521, 107157347235102093119751643480065, 3511331954199825387348021853554769921
Offset: 0

Views

Author

Paul D. Hanna, Mar 14 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[2^((n(n-1))/2-(k(k-1))/2),{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jul 05 2023 *)
  • PARI
    a(n)=sum(k=0,n,2^((n-k)*(n+k-1)/2))

Formula

a(n) = Sum_{k=0..n} 2^(n*(n-1)/2 - k*(k-1)/2).
G.f. A(x) satisfies: A(x) = 1/(1 - x) + x * A(2*x). - Ilya Gutkovskiy, Jun 06 2020
a(n) = a(n-1) * 2^(n-1) + 1 for n > 0 and a(0) = 1. - Werner Schulte, Oct 17 2023
Showing 1-3 of 3 results.