cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A073587 a(n) = a(n-1)*2^n + 1 where a(0)=1.

Original entry on oeis.org

1, 3, 13, 105, 1681, 53793, 3442753, 440672385, 112812130561, 57759810847233, 59146046307566593, 121131102837896382465, 496152997224023582576641, 4064485353259201188467843073, 66592528027798752271857140908033, 2182103958414909514444214793274425345
Offset: 0

Views

Author

Felice Russo, Aug 28 2002

Keywords

Comments

Also, number of nodes in an n-ary tree with increasing fanout as the level increases. - Dhruv Matani, Apr 12 2012

Crossrefs

Cf. A000225 (nodes in a binary tree).

Programs

  • Mathematica
    a = 1; Table[a = a*2^n + 1, {n, 14}] (* Jayanta Basu, Jul 02 2013 *)
  • UBASIC
    25 A=1
    30 for I=1 to 20
    40 A=A*2^I+1
    50 print A
    60 next
    70 end

Formula

a(n) = floor(D*2^(n*(n+1)/2)) where D is a constant, D=1.64163256065515386629... = Sum_{k>=0} 1/2^(k(k+1)/2) = A299998. - Benoit Cloitre, Sep 01 2002

Extensions

Added a(0)=1. Added information from duplicate sequence A182104. - N. J. A. Sloane, Dec 28 2015

A117263 Row sums of triangle A117262; also, self-convolution of A117264.

Original entry on oeis.org

1, 2, 7, 64, 1729, 140050, 34032151, 24809438080, 54258241080961, 355988319732185122, 7006918097288599756327, 413751506726794527011353024, 73294838162131470076480154142529
Offset: 0

Views

Author

Paul D. Hanna, Mar 14 2006

Keywords

Crossrefs

Programs

  • PARI
    a(n)=sum(k=0,n,3^((n-k)*(n+k-1)/2))

Formula

a(n) = Sum_{k=0..n} 3^( n*(n-1)/2 - k*(k-1)/2 ).
G.f. A(x) satisfies: A(x) = 1/(1 - x) + x * A(3*x). - Ilya Gutkovskiy, Jun 06 2020

A335901 a(n) = 2*a(floor((n-1)/a(n-1))) with a(1) = 1.

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 4, 8, 4, 4, 4, 4, 4, 8, 4, 8, 4, 4, 4, 4, 4, 8, 4, 8, 4, 8, 8, 8, 8, 8, 8, 8, 8, 4, 8, 4, 8, 4, 8, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 4, 8, 4, 8, 4, 8, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 1

Views

Author

Altug Alkan, following a suggestion from Andrew R. Booker, Jun 29 2020

Keywords

Comments

Least k such that a(k) = 2^n are 1, 2, 5, 21, 169, 2705, ... (Conjecture: This sequence is A117261).

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember;
      2*procname(floor((n-1)/procname(n-1))) end proc:
    f(1):= 1:
    map(f, [$1..105]); # Robert Israel, Jul 08 2020
  • Mathematica
    a[1] = 1; a[n_] := a[n] = 2 * a[Floor[(n-1)/a[n-1]]]; Array[a, 100] (* Amiram Eldar, Jun 29 2020 *)
  • PARI
    a=vector(10^3); a[1]=1; for(n=2, #a, a[n]=2*a[(n-1)\a[n-1]]); a
Showing 1-3 of 3 results.