cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A182104 Duplicate of A073587.

Original entry on oeis.org

1, 3, 13, 105, 1681, 53793, 3442753, 440672385, 112812130561
Offset: 0

Views

Author

Keywords

A076131 a(n) = 2^n*a(n-1) + 1, a(0) = 0.

Original entry on oeis.org

0, 1, 5, 41, 657, 21025, 1345601, 172236929, 44092653825, 22575438758401, 23117249288602625, 47344126543058176001, 193921542320366288900097, 1588605274688440638669594625, 26027708820495411423962638336001, 852875962629993641540407732994080769
Offset: 0

Views

Author

Kyle Hunter (hunterk(AT)raytheon.com), Oct 31 2002

Keywords

Comments

Base-2 expansion is same as base 10 expansion of A076127.

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := 2^n a[n - 1] + 1; Table[ a[n], {n, 0, 13}]
  • PARI
    a(n)=if(n<0,0,subst(Polrev(Vec(sum(k=1,n,x^(k*(k+1)/2)))),x,2))
    
  • PARI
    a(n)=if(n<1,0,1+a(n-1)*2^n)

Formula

a(n) = floor(c*2^((n+1)*(n+2)/2)) where c = sum(k>=1, 1/2^A000217(k))=0.6416325... - Benoit Cloitre, Nov 01 2002

Extensions

Edited and extended by Robert G. Wilson v, Oct 31 2002
Formula corrected by Vaclav Kotesovec, Aug 11 2012

A117261 Row sums of triangle A117260.

Original entry on oeis.org

1, 2, 5, 21, 169, 2705, 86561, 5539905, 709107841, 181531607297, 92944182936065, 95174843326530561, 194918079132734588929, 798384452127680876253185, 6540365431829961738266091521, 107157347235102093119751643480065, 3511331954199825387348021853554769921
Offset: 0

Views

Author

Paul D. Hanna, Mar 14 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[2^((n(n-1))/2-(k(k-1))/2),{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jul 05 2023 *)
  • PARI
    a(n)=sum(k=0,n,2^((n-k)*(n+k-1)/2))

Formula

a(n) = Sum_{k=0..n} 2^(n*(n-1)/2 - k*(k-1)/2).
G.f. A(x) satisfies: A(x) = 1/(1 - x) + x * A(2*x). - Ilya Gutkovskiy, Jun 06 2020
a(n) = a(n-1) * 2^(n-1) + 1 for n > 0 and a(0) = 1. - Werner Schulte, Oct 17 2023

A225609 Recurrence a(n) = 2^n*a(n-1) + a(n-2) with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 4, 33, 532, 17057, 1092180, 139816097, 35794013012, 18326674478241, 18766550459731796, 38433913668205196449, 157425329151518944386900, 1289628334843156860622681249, 21129270795495611155960953970516, 692363946716428521201685400328549537
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 22 2013

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n]==2^n*a[n-1]+a[n-2],a[0]==0,a[1]==1},a,{n,0,15}]

Formula

a(n) ~ c * 2^(n^2/2 + n/2), where c = 0.52087674149344124670486211129137...

A228467 Recurrence a(n) = 2^n*a(n-1) - a(n-2) with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 4, 31, 492, 15713, 1005140, 128642207, 32931399852, 16860748082017, 17265373104585556, 35359467257443136671, 144832360621113983218860, 1186466662848698493085764449, 19439069659280715489603181513556, 636979433408843822314618558750438559
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 22 2013

Keywords

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n]==2^n*a[n-1]-a[n-2],a[0]==0,a[1]==1},a,{n,0,15}]
    nxt[{n_,a_,b_}]:={n+1,b,b*2^(n+1)-a}; NestList[nxt,{1,0,1},20][[All,2]] (* Harvey P. Dale, Jul 02 2022 *)

Formula

a(n) ~ c * 2^(n^2/2 + n/2), where c = 0.4792100640621967581293535977698228585...

A371441 a(n) = a(n-1)*3^n + 1 where a(0)=1.

Original entry on oeis.org

1, 4, 37, 1000, 81001, 19683244, 14349084877, 31381448626000, 205893684435186001, 4052605390737766057684, 239302295717674347940182517, 42391683779498857714559512339000, 22528678819460652442683221796950499001, 35917990801478965784376042224979510418771324
Offset: 0

Views

Author

Alexandre Herrera, Mar 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[3^(k*(2*n + 1 - k)/2), {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Apr 10 2024 *)
    Block[{n = 0}, NestList[#*3^++n + 1 &, 1, 15]] (* Paolo Xausa, Apr 19 2024 *)
  • Python
    l = [1]
    for i in range(1,14):
        l.append(l[-1]*pow(3,i) + 1)
    print(l)

Formula

a(n) = Sum_{k=0..n} 3^(k*(2*n + 1 - k)/2). - Vaclav Kotesovec, Apr 10 2024
Showing 1-6 of 6 results.