Original entry on oeis.org
1, 2, 5, 21, 169, 2705, 86561, 5539905, 709107841, 181531607297, 92944182936065, 95174843326530561, 194918079132734588929, 798384452127680876253185, 6540365431829961738266091521, 107157347235102093119751643480065, 3511331954199825387348021853554769921
Offset: 0
-
Table[Sum[2^((n(n-1))/2-(k(k-1))/2),{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jul 05 2023 *)
-
a(n)=sum(k=0,n,2^((n-k)*(n+k-1)/2))
A117250
Triangle T, read by rows, where matrix power T^2 has powers of 2 in the secondary diagonal: [T^2](n+1,n) = 2^(n+1), with all 1's in the main diagonal and zeros elsewhere.
Original entry on oeis.org
1, 1, 1, -1, 2, 1, 4, -4, 4, 1, -40, 32, -16, 8, 1, 896, -640, 256, -64, 16, 1, -43008, 28672, -10240, 2048, -256, 32, 1, 4325376, -2752512, 917504, -163840, 16384, -1024, 64, 1, -899678208, 553648128, -176160768, 29360128, -2621440, 131072, -4096, 128, 1
Offset: 0
Triangle T begins:
1;
1,1;
-1,2,1;
4,-4,4,1;
-40,32,-16,8,1;
896,-640,256,-64,16,1;
-43008,28672,-10240,2048,-256,32,1;
4325376,-2752512,917504,-163840,16384,-1024,64,1;
-899678208,553648128,-176160768,29360128,-2621440,131072,-4096,128,1;
Matrix square T^2 has powers of 2 in the 2nd diagonal:
1;
2,1;
0,4,1;
0,0,8,1;
0,0,0,16,1;
0,0,0,0,32,1;
0,0,0,0,0,64,1; ...
Cf.
A117251 (column 0); variants:
A117252 (p=q=3),
A117254 (p=q=4),
A117256 (p=q=5),
A117258 (p=2, q=4),
A117260 (p=-1, q=2),
A117262 (p=-1, q=3),
A117265 (p=-2, q=2).
-
{T(n,k)=local(m=1,p=2,q=2,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
A117252
Triangle T, read by rows, where matrix power T^3 has powers of 3 in the secondary diagonal: [T^3](n+1,n) = 3^(n+1), with all 1's in the main diagonal and zeros elsewhere.
Original entry on oeis.org
1, 1, 1, -3, 3, 1, 45, -27, 9, 1, -2430, 1215, -243, 27, 1, 433026, -196830, 32805, -2187, 81, 1, -245525742, 105225318, -15943230, 885735, -19683, 243, 1, 434685788658, -178988265918, 25569752274, -1291401630, 23914845, -177147, 729, 1
Offset: 0
Triangle T begins:
1;
1,1;
-3,3,1;
45,-27,9,1;
-2430,1215,-243,27,1;
433026,-196830,32805,-2187,81,1;
-245525742,105225318,-15943230,885735,-19683,243,1;
434685788658,-178988265918,25569752274,-1291401630,23914845,-177147,729,1;
Matrix cube T^3 has powers of 3 in the 2nd diagonal:
1;
3,1;
0,9,1;
0,0,27,1;
0,0,0,81,1;
0,0,0,0,243,1;
0,0,0,0,0,729,1; ...
Cf.
A117253 (column 0); variants:
A117250 (p=q=2),
A117254 (p=q=4),
A117256 (p=q=5),
A117258 (p=2, q=4),
A117260 (p=-1, q=2),
A117262 (p=-1, q=3),
A117265 (p=-2, q=2).
-
{T(n,k)=local(m=1,p=3,q=3,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
A117254
Triangle T, read by rows, where matrix power T^4 has powers of 4 in the secondary diagonal: [T^4](n+1,n) = 4^(n+1), with all 1's in the main diagonal and zeros elsewhere.
Original entry on oeis.org
1, 1, 1, -6, 4, 1, 224, -96, 16, 1, -39424, 14336, -1536, 64, 1, 30277632, -10092544, 917504, -24576, 256, 1, -98180268032, 31004295168, -2583691264, 58720256, -393216, 1024, 1, 1321338098679808, -402146377859072, 31748398252032, -661424963584, 3758096384, -6291456, 4096, 1
Offset: 0
Triangle T begins:
1;
1,1;
-6,4,1;
224,-96,16,1;
-39424,14336,-1536,64,1;
30277632,-10092544,917504,-24576,256,1;
-98180268032,31004295168,-2583691264,58720256,-393216,1024,1; ...
Matrix power T^4 has powers of 4 in the 2nd diagonal:
1;
4,1;
0,16,1;
0,0,64,1;
0,0,0,256,1;
0,0,0,0,1024,1;
0,0,0,0,0,4096,1; ...
Cf.
A117255 (column 0); variants:
A117250 (p=q=2),
A117252 (p=q=3),
A117256 (p=q=5),
A117258 (p=2, q=4),
A117260 (p=-1, q=2),
A117262 (p=-1, q=3),
A117265 (p=-2, q=2).
-
{T(n,k)=local(m=1,p=4,q=4,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
A117256
Triangle T, read by rows, where matrix power T^5 has powers of 5 in the secondary diagonal: [T^5](n+1,n) = 5^(n+1), with all 1's in the main diagonal and zeros elsewhere.
Original entry on oeis.org
1, 1, 1, -10, 5, 1, 750, -250, 25, 1, -328125, 93750, -6250, 125, 1, 779296875, -205078125, 11718750, -156250, 625, 1, -9741210937500, 2435302734375, -128173828125, 1464843750, -3906250, 3125, 1, 630569458007812500, -152206420898437500, 7610321044921875
Offset: 0
Triangle T begins:
1;
1,1;
-10,5,1;
750,-250,25,1;
-328125,93750,-6250,125,1;
779296875,-205078125,11718750,-156250,625,1;
-9741210937500,2435302734375,-128173828125,1464843750,-3906250,3125,1;
Matrix power T^5 has powers of 5 in the 2nd diagonal:
1;
5,1;
0,25,1;
0,0,125,1;
0,0,0,625,1;
0,0,0,0,3125,1; ...
Cf.
A117257 (column 0); variants:
A117250 (p=q=2),
A117252 (p=q=3),
A117254 (p=q=4),
A117258 (p=2, q=4),
A117260 (p=-1, q=2),
A117262 (p=-1, q=3),
A117265 (p=-2, q=2).
-
{T(n,k)=local(m=1,p=5,q=5,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
A117258
Triangle T, read by rows, where matrix power T^2 has 2*4^n in the secondary diagonal: [T^2](n+1,n) = 2*4^n, with all 1's in the main diagonal and zeros elsewhere.
Original entry on oeis.org
1, 1, 1, -2, 4, 1, 32, -32, 16, 1, -2560, 2048, -512, 64, 1, 917504, -655360, 131072, -8192, 256, 1, -1409286144, 939524096, -167772160, 8388608, -131072, 1024, 1, 9070970929152, -5772436045824, 962072674304, -42949672960, 536870912, -2097152, 4096, 1
Offset: 0
Triangle T begins:
1;
1,1;
-2,4,1;
32,-32,16,1;
-2560,2048,-512,64,1;
917504,-655360,131072,-8192,256,1;
-1409286144,939524096,-167772160,8388608,-131072,1024,1;
Matrix square T^2 has 2*4^n in the 2nd diagonal:
1,
2,1,
0,8,1,
0,0,32,1,
0,0,0,128,1,
0,0,0,0,512,1, ...
-
{T(n,k)=local(m=1,p=2,q=4,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
A117262
Triangle T, read by rows, where matrix inverse T^-1 has -3^n in the secondary diagonal: [T^-1](n+1,n) = -3^n, with all 1's in the main diagonal and zeros elsewhere.
Original entry on oeis.org
1, 1, 1, 3, 3, 1, 27, 27, 9, 1, 729, 729, 243, 27, 1, 59049, 59049, 19683, 2187, 81, 1, 14348907, 14348907, 4782969, 531441, 19683, 243, 1, 10460353203, 10460353203, 3486784401, 387420489, 14348907, 177147, 729, 1
Offset: 0
Triangle T begins:
1;
1,1;
3,3,1;
27,27,9,1;
729,729,243,27,1;
59049,59049,19683,2187,81,1;
14348907,14348907,4782969,531441,19683,243,1;
10460353203,10460353203,3486784401,387420489,14348907,177147,729,1;
Matrix inverse T^-1 has -3^n in the 2nd diagonal:
1,
-1,1,
0,-3,1,
0,0,-9,1,
0,0,0,-27,1,
0,0,0,0,-81,1,
0,0,0,0,0,-243,1, ...
Cf.
A047656 (column 0),
A117263 (row sums); variants:
A117250 (p=q=2),
A117252 (p=q=3),
A117254 (p=q=4),
A117256 (p=q=5),
A117258 (p=2, q=4),
A117260 (p=-1, q=2),
A117265 (p=-2, q=2).
-
{T(n,k)=local(m=1,p=-1,q=3,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
A117265
Triangle T, read by rows, where matrix power T^-2 has -2^(n+1) in the secondary diagonal: [T^-2](n+1,n) = -2^(n+1), with all 1's in the main diagonal and zeros elsewhere.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 20, 12, 4, 1, 280, 160, 48, 8, 1, 8064, 4480, 1280, 192, 16, 1, 473088, 258048, 71680, 10240, 768, 32, 1, 56229888, 30277632, 8257536, 1146880, 81920, 3072, 64, 1, 13495173120, 7197425664, 1937768448, 264241152, 18350080, 655360
Offset: 0
Triangle T begins:
1;
1,1;
3,2,1;
20,12,4,1;
280,160,48,8,1;
8064,4480,1280,192,16,1;
473088,258048,71680,10240,768,32,1;
56229888,30277632,8257536,1146880,81920,3072,64,1;
13495173120,7197425664,1937768448,264241152,18350080,655360,12288,128,1;
Matrix inverse square T^-2 has -2^(n+1) in the 2nd diagonal:
1;
-2,1;
0,-4,1;
0,0,-8,1;
0,0,0,-16,1;
0,0,0,0,-32,1;
0,0,0,0,0,-64,1; ...
Cf.
A086229 (column 0),
A117266 (row sums); variants:
A117250 (p=q=2),
A117252 (p=q=3),
A117254 (p=q=4),
A117256 (p=q=5),
A117258 (p=2, q=4),
A117260 (p=-1, q=2),
A117262 (p=-1, q=3).
-
{T(n,k)=local(m=1,p=-2,q=2,r=1);prod(j=0,n-k-1,m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)}
A365638
Triangular array read by rows: T(n, k) is the number of ways that a k-element transitive tournament can occur as a subtournament of a larger tournament on n labeled vertices.
Original entry on oeis.org
1, 1, 1, 2, 4, 2, 8, 24, 24, 6, 64, 256, 384, 192, 24, 1024, 5120, 10240, 7680, 1920, 120, 32768, 196608, 491520, 491520, 184320, 23040, 720, 2097152, 14680064, 44040192, 55050240, 27525120, 5160960, 322560, 5040, 268435456, 2147483648, 7516192768, 11274289152, 7046430720, 1761607680, 165150720, 5160960, 40320
Offset: 0
Triangle begins:
1
1, 1
2, 4, 2
8, 24, 24, 6
64, 256, 384, 192, 24
1024, 5120, 10240, 7680, 1920, 120
-
T := (n, k) -> 2^(((n-1)*n - (k-1)*k)/2) * n! / (n-k)!:
seq(seq(T(n, k), k = 0..n), n = 0..8); # Peter Luschny, Nov 02 2023
-
T(n, k) = binomial(n, k)*k!*2^(binomial(n, 2) - binomial(k, 2))
Showing 1-9 of 9 results.
Comments