A117269 Triangle T, read by rows, that satisfies matrix equation: T - (T-I)^2 = C, where C is Pascal's triangle.
1, 1, 1, 3, 2, 1, 19, 9, 3, 1, 207, 76, 18, 4, 1, 3211, 1035, 190, 30, 5, 1, 64383, 19266, 3105, 380, 45, 6, 1, 1581259, 450681, 67431, 7245, 665, 63, 7, 1, 45948927, 12650072, 1802724, 179816, 14490, 1064, 84, 8, 1, 1541641771, 413540343, 56925324, 5408172
Offset: 0
Examples
Triangle T begins: 1; 1,1; 3,2,1; 19,9,3,1; 207,76,18,4,1; 3211,1035,190,30,5,1; 64383,19266,3105,380,45,6,1; 1581259,450681,67431,7245,665,63,7,1; ... where (T-I)^2 = 0; 0,0; 2,0,0; 18,6,0,0; 206,72,12,0,0; 3210,1030,180,20,0,0; 64382,19260,3090,360,30,0,0; ... and T - (T-I)^2 = Pascal's triangle.
Programs
-
PARI
{T(n,k)=local(C=matrix(n+1,n+1,r,c,if(r>=c,binomial(r-1,c-1))),M=C); for(i=1,n+1,M=(M-M^0)^2+C);return(M[n+1,k+1])}
Formula
T(n,k) = A052886(n-k)*C(n,k) for n>k, with T(n,n) = 1.
Comments