cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A117271 Column 0 of triangle A117270, which is the matrix log of triangle A117269.

Original entry on oeis.org

0, 1, 2, 12, 134, 2100, 42302, 1041852, 30331814, 1019056260, 38805685262, 1651676734092, 77703508288694, 4003868870257620, 224255353667365022, 13565588100060643932, 881405810330856632774, 61218510507062012550180
Offset: 0

Views

Author

Paul D. Hanna, Mar 05 2006

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(C=matrix(n+1,n+1,r,c,if(r>=c,binomial(r-1,c-1))),M=C,L); for(i=1,n+1,M=(M-M^0)^2+C);L=sum(r=1,#M,-(M^0-M)^r/r);return(L[n+1,1])}

Formula

E.g.f.: A(x) = log( (3-sqrt(5-4*exp(x)))/2 ).
a(n) ~ sqrt(10) * n^(n-1) / (6 * exp(n) * (log(5)-2*log(2))^(n-1/2)). - Vaclav Kotesovec, Feb 25 2014

A117270 Matrix log of triangle M = A117269, which satisfies: M - (M-I)^2 = C where C is Pascal's triangle.

Original entry on oeis.org

0, 1, 0, 2, 2, 0, 12, 6, 3, 0, 134, 48, 12, 4, 0, 2100, 670, 120, 20, 5, 0, 42302, 12600, 2010, 240, 30, 6, 0, 1041852, 296114, 44100, 4690, 420, 42, 7, 0, 30331814, 8334816, 1184456, 117600, 9380, 672, 56, 8, 0, 1019056260, 272986326, 37506672, 3553368
Offset: 0

Views

Author

Paul D. Hanna, Mar 05 2006

Keywords

Comments

E.g.f. of column 0 (A117271) is log( (3-sqrt(5-4*exp(x)))/2 ) and equals the log of the g.f. of column 0 of A117269.

Examples

			Triangle begins:
0;
1,0;
2,2,0;
12,6,3,0;
134,48,12,4,0;
2100,670,120,20,5,0;
42302,12600,2010,240,30,6,0;
1041852,296114,44100,4690,420,42,7,0; ...
		

Crossrefs

Cf. A117269, A117271 (column 0).

Programs

  • PARI
    {a(n)=local(C=matrix(n+1,n+1,r,c,if(r>=c,binomial(r-1,c-1))),M=C,L); for(i=1,n+1,M=(M-M^0)^2+C);L=sum(r=1,#M,-(M^0-M)^r/r);return(L[n+1,1])}

Formula

T(n,k) = A117271(n-k)*C(n,k).

A120903 Triangle T, read by rows, that satisfies matrix equation: T + (T-I)^2 = C, where C is Pascal's triangle.

Original entry on oeis.org

1, 1, 1, -1, 2, 1, 7, -3, 3, 1, -61, 28, -6, 4, 1, 751, -305, 70, -10, 5, 1, -11821, 4506, -915, 140, -15, 6, 1, 226927, -82747, 15771, -2135, 245, -21, 7, 1, -5142061, 1815416, -330988, 42056, -4270, 392, -28, 8, 1, 134341711, -46278549, 8169372, -992964, 94626, -7686, 588, -36, 9, 1, -3975839341, 1343417110
Offset: 0

Views

Author

Paul D. Hanna, Jul 17 2006

Keywords

Comments

Column 0 is signed A048287, which is the number of semiorders on n labeled nodes.

Examples

			Triangle T begins:
         1;
         1,       1;
        -1,       2,       1;
         7,      -3,       3,     1;
       -61,      28,      -6,     4,     1;
       751,    -305,      70,   -10,     5,   1;
    -11821,    4506,    -915,   140,   -15,   6,   1;
    226927,  -82747,   15771, -2135,   245, -21,   7, 1;
  -5142061, 1815416, -330988, 42056, -4270, 392, -28, 8, 1;
The matrix square of T less the diagonal is (T-I)^2:
      0;
      0,     0;
      2,     0,   0;
     -6,     6,   0,    0;
     62,   -24,  12,    0,  0;
   -750,   310, -60,   20,  0, 0;
  11822, -4500, 930, -120, 30, 0, 0;
where C = T + (T-I)^2 = 2*T^2 - 2*T + I.
		

Crossrefs

Cf. A048287 (column 0); A117269 (variant: T - (T-I)^2 = C).

Programs

  • PARI
    /* Generated by Recursion T = C - (T-I)^2 : */ {T(n, k)=local(C=matrix(n+1, n+1, r, c, if(r>=c, binomial(r-1, c-1))), M=C); for(i=1, n+1, M=C-(M-M^0)^2 ); return(M[n+1, k+1])}
    
  • PARI
    /* Generated by E.G.F.: */ {T(n,k)=n!*polcoeff(polcoeff(exp(x*y)*(1 + sqrt(4*exp(x +x*O(x^n))-3))/2,n,x),k,y)}

Formula

E.g.f. A(x,y) satisfies: A(x,y) + [A(x,y) - exp(x*y)]^2 = exp(x+x*y).
Explicitly, e.g.f.: A(x,y) = exp(x*y)*(1 + sqrt(4*exp(x)-3))/2.
E.g.f. of column 0: (1 + sqrt(4*exp(x)-3))/2.
T(n,k) = -(-1)^(n-k)*A048287(n-k)*C(n,k) + 2*0^(n-k).
Matrix square: [T^2](n,k) = ( C(n,k) + 2*T(n,k) - 0^(n-k) )/2.
Showing 1-3 of 3 results.