A117302 Number of cases in which the first player gets killed in a Russian roulette game when 7 players use a gun with n chambers and the number of the bullets can be from 1 to n. In the game they do not rotate the cylinder after the game starts.
1, 2, 4, 8, 16, 32, 64, 129, 258, 516, 1032, 2064, 4128, 8256, 16513, 33026, 66052, 132104, 264208, 528416, 1056832, 2113665, 4227330, 8454660, 16909320, 33818640, 67637280, 135274560, 270549121, 541098242
Offset: 1
Examples
If the number of chambers is 3, then the number of the bullets can be 1,2,3. The first one get killed when one bullet is in the first chamber and the remaining bullets are in the second and the third chamber. All the cases are {{1, 0, 0}, {1, 1, 0}, {1, 0, 1}, {1, 1, 1}}, where we denote by 1 the chamber that contains the bullet. Therefore a(3) = 4.
References
- Miyadera, R. "General Theory of Russian Roulette." Mathematica source.
- Miyadera, R. Mathematical Theory of Magic Fruits Archimedes-lab.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- R. Miyadera, General Theory of Russian Roulette, MathSource
- R. Miyadera, Daisuke Minematsu, Satoshi Hashiba and Munetoshi Hashiba, Theory of Magic Fruits, Archimedes-lab, Interesting patterns of fractions
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,0,0,0,1,-2).
Programs
-
Magma
[Floor(2^(n+6)/127): n in [1..40]]; // G. C. Greubel, May 07 2019
-
Maple
A117302 := proc(n) floor(2^(n+6)/127) ; end proc:
-
Mathematica
U7[n_, m_]:= Block[{t}, t=Floor[(n-m)/7]; Sum[Binomial[n-1-7z, m-1], {z,0,t}]]; A7[n_]:= Sum[U7[n, m], {m,1,n}]; Table[A7[n], {n,1,40}] LinearRecurrence[{2,0,0,0,0,0,1,-2}, {1,2,4,8,16,32,64,129}, 40] (* G. C. Greubel, May 07 2019 *)
-
PARI
a(n)=2^(n+6)\127 \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[floor(2^(n+6)/127) for n in (1..40)] # G. C. Greubel, May 07 2019
Formula
a(n) = (2^(n + 6) - 2^((n-1) mod 7))/(2^7 - 1).
a(n) = floor(2^(n+6)/127). - Mircea Merca, Dec 22 2010
From Joerg Arndt, Jan 08 2011: (Start)
G.f.: x/( (x-1)*(2*x-1)*(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1) ).
a(n) = 2*a(n-1) + a(n-7) - 2*a(n-8). (End)
Extensions
Edited by G. C. Greubel, May 07 2019
Comments