A117317 Triangle related to partitions of n.
1, 2, 1, 4, 5, 1, 8, 16, 9, 1, 16, 44, 41, 14, 1, 32, 112, 146, 85, 20, 1, 64, 272, 456, 377, 155, 27, 1, 128, 640, 1312, 1408, 833, 259, 35, 1, 256, 1472, 3568, 4712, 3649, 1652, 406, 44, 1, 512, 3328, 9312, 14608, 14002, 8361, 3024, 606, 54, 1, 1024, 7424, 23552
Offset: 0
Examples
Triangle begins 1, 2, 1, 4, 5, 1, 8, 16, 9, 1, 16, 44, 41, 14, 1, 32, 112, 146, 85, 20, 1, 64, 272, 456, 377, 155, 27, 1 Triangle (0, 2, 0, 0, 0, 0, ...) DELTA (1, 0, 1/2, 1/2, 0, 0, ...) begins : 1 0, 1 0, 2, 1 0, 4, 5, 1 0, 8, 16, 9, 1 0, 16, 44, 41, 14, 1 0, 32, 112, 146, 85, 20, 1 0, 64, 272, 456, 377, 155, 27, 1
Links
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
Programs
-
Haskell
a117317 n k = a117317_tabl !! n !! k a117317_row n = a117317_tabl !! n a117317_tabl = map reverse a056242_tabl -- Reinhard Zumkeller, May 08 2014
Formula
Number triangle T(n,k)=sum{j=0..n-k, C(n+j,k)C(n-k,j)}
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2) for n>1. - Philippe Deléham, Jan 28 2012
G.f.: (1-y*x)/(1-2*(y+1)*x+y*(y+1)*x^2). - Philippe Deléham, Jan 28 2012
Comments