cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A117325 Indices of primes in A117322 prime(n) modulo semiprime(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 22, 25, 29, 33, 35, 50, 64, 73, 76, 82, 88, 100, 115, 120, 169, 174, 176, 188, 194, 202, 211, 214, 218, 249, 265, 325, 354, 363, 369, 370, 371, 372, 373, 374, 378, 379, 380, 384, 385, 386, 393, 394, 395, 396, 399, 400
Offset: 1

Views

Author

Jonathan Vos Post, Mar 08 2006

Keywords

Examples

			a(60) = 400 because semiprime(400) = 1355, prime(400) = 2741 and
2741 == 31 mod 1355, where 31 is prime.
		

Formula

n such that A117322(n) is prime. n such that A000040(n) modulo A001358(n) is in A000040.

A117326 Indices of semiprimes in A117322 prime(n) modulo semiprime(n).

Original entry on oeis.org

13, 17, 18, 20, 21, 27, 28, 30, 32, 41, 42, 43, 46, 47, 49, 53, 55, 56, 58, 59, 63, 69, 72, 75, 81
Offset: 1

Views

Author

Jonathan Vos Post, Mar 08 2006

Keywords

Examples

			a(1) = 13 because A117322(13) = prime(13) modulo semiprime(13) = 41 mod 35 = 6 = 2 * 3 is semiprime.
a(2) = 17 because A117322(17) = 59 mod 49 = 10 = 2 * 5 is semiprime.
a(3) = 18 because A117322(18) = 61 mod 51 = 10 = 2 * 5 is semiprime.
a(4) = 20 because A117322(20) = 71 mod 57 = 14 = 2 * 7 is semiprime.
		

A117324 Prime(10^n) modulo semiprime(10^n).

Original entry on oeis.org

2, 3, 227, 729, 22965, 380555, 156346, 10920166, 202913258, 2973399074, 39284376410, 489544827463, 5874954672992
Offset: 0

Views

Author

Jonathan Vos Post, Mar 08 2006

Keywords

Examples

			prime(10^0) modulo semiprime(10^0) = 2 mod 4 = 2.
prime(10^1) modulo semiprime(10^1) = 29 mod 26 = 3.
prime(10^2) modulo semiprime(10^2) = 541 mod 314 = 227.
		

Formula

a(n) = A000040(10^n) modulo A001358(10^n). a(n) = A117322(10^n). a(n) = A006988(n) modulo A114125(n).

Extensions

a(12) from Zak Seidov
Showing 1-3 of 3 results.