A117388 a(n) is the smallest n-digit integer such that, if all numbers formed by inserting the exponentiation symbol between any two digits are added up, the sum is prime.
21, 121, 1226, 14423, 111334, 1186896
Offset: 2
Examples
a(5) = 14423 since 1^4423+14^423+144^23+1442^3 is prime.
Crossrefs
Cf. A113762.
Programs
-
Mathematica
(* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) f[n_] := Block[{k = (10^n - 1)/9}, While[id = IntegerDigits@k; First@ Union@ id == 0 || !PrimeQ[Plus @@ Table[FromDigits@ Take[id, {1, k}]^FromDigits@ Take[id, {k + 1, n}], {k, n - 1}]], k++ ]; k]; Do[Print[f[n]] // Timing, {n, 2, 7}] (* Robert G. Wilson v, Apr 27 2006 *)
-
Python
from sympy import isprime from itertools import product def a(n): for p in product("123456789", repeat=n): s = "".join(p) if isprime(sum(int(s[:i])**int(s[i:]) for i in range(1, n))): return int(s) print([a(n) for n in range(2, 6)]) # Michael S. Branicky, Jun 27 2022
Extensions
a(6) from Robert G. Wilson v and Farideh Firoozbakht, Apr 27 2006
a(7) from Sean A. Irvine, Dec 15 2009
Comments