A117414 An Euler triangle.
1, 0, 1, 0, 4, 1, 0, 48, 12, 1, 0, 1088, 272, 24, 1, 0, 39680, 9920, 880, 40, 1, 0, 2122752, 530688, 47104, 2160, 60, 1, 0, 156577792, 39144448, 3474688, 159488, 4480, 84, 1, 0, 15230058496, 3807514624, 337979392, 15514880, 436352, 8288, 112, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 4, 1; 0, 48, 12, 1; 0, 1088, 272, 24, 1; 0, 39680, 9920, 880, 40, 1; 0, 2122752, 530688, 47104, 2160, 60, 1; ...
Links
- N. D. Elkies, On the sums Sum((4k+1)^(-n),k,-inf,+inf), arXiv:math/0101168 [math.CA], 2001-2003, page 9.
Programs
-
Mathematica
nn = 6; B[n_] := (2 n)!/2^n; e[z_] := Sum[z^n/B[n], {n, 0, nn}]; Map[Select[#, # > 0 &] &,Table[B[n], {n, 0, nn}] CoefficientList[ Series[e[(u - 1) z] 1/e[-z], {z, 0, nn}], {z, u}]] // Grid (* Geoffrey Critzer, Apr 26 2023 *)
Formula
From Geoffrey Critzer, Apr 26 2023: (Start)
Sum_{n>=0} Sum_{k=0..n} T(n,k)*u^k*z^n/A000680(n) = E((u-1)*z)/E(-z) Where E(z) = Sum_{n>=0} z^n/A000680(n).
Sum_{k=0..n} T(n,k)*k = A086646(n,1). (End)
Comments