cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A117411 Skew triangle associated to the Euler numbers.

Original entry on oeis.org

1, 0, 1, 0, -4, 1, 0, 0, -12, 1, 0, 0, 16, -24, 1, 0, 0, 0, 80, -40, 1, 0, 0, 0, -64, 240, -60, 1, 0, 0, 0, 0, -448, 560, -84, 1, 0, 0, 0, 0, 256, -1792, 1120, -112, 1, 0, 0, 0, 0, 0, 2304, -5376, 2016, -144, 1, 0, 0, 0, 0, 0, -1024, 11520, -13440, 3360, -180, 1, 0, 0, 0, 0, 0, 0, -11264, 42240, -29568, 5280, -220, 1
Offset: 0

Views

Author

Paul Barry, Mar 13 2006

Keywords

Comments

Inverse is A117414. Row sums of the inverse are the Euler numbers A000364.
Triangle, read by rows, given by [0,-4,4,0,0,0,0,0,0,0,...] DELTA [1,0,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 01 2009

Examples

			Triangle begins
  1;
  0,  1;
  0, -4,   1;
  0,  0, -12,   1;
  0,  0,  16, -24,    1;
  0,  0,   0,  80,  -40,     1;
  0,  0,   0, -64,  240,   -60,      1;
  0,  0,   0,   0, -448,   560,    -84,      1;
  0,  0,   0,   0,  256, -1792,   1120,   -112,      1;
  0,  0,   0,   0,    0,  2304,  -5376,   2016,   -144,      1;
  0,  0,   0,   0,    0, -1024,  11520, -13440,   3360,   -180,    1;
  0,  0,   0,   0,    0,     0, -11264,  42240, -29568,   5280, -220,    1;
  0,  0,   0,   0,    0,     0,   4096, -67584, 126720, -59136, 7920, -264, 1;
		

Crossrefs

Programs

  • Magma
    A117411:= func< n,k | (-4)^(n-k)*(&+[Binomial(n,k-j)*Binomial(j,n-k): j in [0..n-k]]) >;
    [A117411(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Sep 07 2022
    
  • Mathematica
    T[n_,k_]:= T[n,k]= (-4)^(n-k)*Sum[Binomial[n, k-j]*Binomial[j, n-k], {j,0,n-k}];
    Table[T[n,k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 07 2022 *)
  • SageMath
    def A117411(n,k): return (-4)^(n-k)*sum(binomial(n,k-j)*binomial(j,n-k) for j in (0..n-k))
    flatten([[A117411(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Sep 07 2022

Formula

Sum_{k=0..n} T(n, k) = A006495(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A117413(n).
T(n, k) = (-4)^(n-k)*Sum_{j=0..n-k} C(n,k-j)*C(j,n-k).
G.f.: (1-x*y)/(1-2x*y+x^2*y(y+4)). - Paul Barry, Mar 14 2006
T(n, k) = (-4)^(n-k)*A098158(n,k). - Philippe Deléham, Nov 01 2009
T(n, k) = 2*T(n-1,k-1) - 4*T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,1) = 1, T(1,0) = 0, T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Oct 31 2013
From G. C. Greubel, Sep 07 2022: (Start)
T(n, n) = 1.
T(n, n-1) = -4*A000217(n-1), n >= 1.
T(n, n-2) = (-4)^2 * A000332(n), n >= 2.
T(n, n-3) = (-4)^3 * A000579(n), n >= 3.
T(n, n-4) = (-4)^4 * A000581(n), n >= 4.
T(2*n, n) = A262710(n). (End)

A117415 E.g.f. (x*tan(x)-x^2)/8 (even powers only).

Original entry on oeis.org

0, 0, 1, 12, 272, 9920, 530688, 39144448, 3807514624, 472197021696, 72722212782080, 13616619646091264, 3046271659520557056, 802494810618175946752, 245880605613803859607552, 86696940704285991905525760, 34855851028500677184683245568
Offset: 0

Views

Author

Paul Barry, Mar 13 2006

Keywords

Crossrefs

Column k=2 of Euler triangle A117414.

Programs

  • Mathematica
    With[{nn=40},Take[CoefficientList[Series[(x*Tan[x]-x^2)/8,{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]] (* Harvey P. Dale, May 06 2014 *)

Formula

a(n) = 2^(2*n-1) * (2^(2*n)-1) * abs(Bernoulli(2*n))/4 - (C(1,n) - C(0,n))/4.

Extensions

More terms from Harvey P. Dale, May 06 2014
Showing 1-2 of 2 results.