cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117436 Triangle related to exp(x)*sec(2*x).

Original entry on oeis.org

1, 0, 1, 4, 0, 1, 0, 12, 0, 1, 80, 0, 24, 0, 1, 0, 400, 0, 40, 0, 1, 3904, 0, 1200, 0, 60, 0, 1, 0, 27328, 0, 2800, 0, 84, 0, 1, 354560, 0, 109312, 0, 5600, 0, 112, 0, 1, 0, 3191040, 0, 327936, 0, 10080, 0, 144, 0, 1, 51733504, 0, 15955200, 0, 819840, 0, 16800, 0, 180, 0, 1
Offset: 0

Views

Author

Paul Barry, Mar 16 2006

Keywords

Comments

Inverse is A117435.
Conjecture: The d-th diagonal (starting with d=0) is proportional to the sequence of generalized binomial coefficients binomial(-x, d) where x is the column index. - Søren G. Have, Feb 26 2017

Examples

			Triangle begins as:
         1;
         0,       1;
         4,       0,        1;
         0,      12,        0,      1;
        80,       0,       24,      0,      1;
         0,     400,        0,     40,      0,     1;
      3904,       0,     1200,      0,     60,     0,     1;
         0,   27328,        0,   2800,      0,    84,     0,   1;
    354560,       0,   109312,      0,   5600,     0,   112,   0,   1;
         0, 3191040,        0, 327936,      0, 10080,     0, 144,   0, 1;
  51733504,       0, 15955200,      0, 819840,     0, 16800,   0, 180, 0, 1;
		

Crossrefs

Cf. A000364, A002436 (1st column), A117435 (inverse), A117437 (row sums).

Programs

  • Mathematica
    T[n_, k_]:= Binomial[n, k]*(2*I)^(n-k)*EulerE[n-k];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 01 2021 *)
  • Sage
    flatten([[binomial(n,k)*(2*i)^(n-k)*euler_number(n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 01 2021

Formula

Number triangle whose k-th column has e.g.f. (x^k/k!)*sec(2*x).
T(n, 0) = A002436(n).
Sum_{k=0..n} T(n, k) = A117437(n).
T(n, k) = binomial(n,k) * (2*i)^(n-k) * E(n-k), where E(n) are the Euler numbers with E(2*n) = A000364(n) and E(2*n+1) = 0. - G. C. Greubel, Jun 01 2021