cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A117435 Triangle related to exp(x)*cos(2*x).

Original entry on oeis.org

1, 0, 1, -4, 0, 1, 0, -12, 0, 1, 16, 0, -24, 0, 1, 0, 80, 0, -40, 0, 1, -64, 0, 240, 0, -60, 0, 1, 0, -448, 0, 560, 0, -84, 0, 1, 256, 0, -1792, 0, 1120, 0, -112, 0, 1, 0, 2304, 0, -5376, 0, 2016, 0, -144, 0, 1, -1024, 0, 11520, 0, -13440, 0, 3360, 0, -180, 0, 1
Offset: 0

Views

Author

Paul Barry, Mar 16 2006

Keywords

Comments

Diagonals correspond to rows of A117438.

Examples

			Triangle begins:
    1;
    0,   1;
   -4,   0,   1;
    0, -12,   0,   1;
   16,   0, -24,   0,   1;
    0,  80,   0, -40,   0, 1;
  -64,   0, 240,   0, -60, 0, 1;
		

Crossrefs

Cf. A006495 (row sums), A117411, A117436 (inverse), A117438.

Programs

  • Mathematica
    T[n_,k_]:= Binomial[n,k]*(2*I)^(n-k)*(1+(-1)^(n+k))/2;
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 01 2021 *)
  • Sage
    flatten([[binomial(n,k)*(2*i)^(n-k)*(1+(-1)^(n+k))/2 for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 01 2021

Formula

Number triangle whose k-th column has e.g.f. (x^k/k!)*cos(2x);
T(n, k) = binomial(n,k) * (-4)^((n-k)/2) * (1+(-1)^(n-k))/2.
Sum_{k=0..n} T(n, k) = A006495(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = i^n * ((1+(-1)^n)/2) * (2*floor(n/2) + 1). - G. C. Greubel, Jun 01 2021

A117437 Expansion of e.g.f.: exp(x)*sec(2*x).

Original entry on oeis.org

1, 1, 5, 13, 105, 441, 5165, 30213, 469585, 3529201, 68525525, 629401213, 14664091065, 159175688361, 4326609913085, 54189700721013, 1683369010256545, 23894940183997921, 835066388382183845, 13248060325188261613
Offset: 0

Views

Author

Paul Barry, Mar 16 2006

Keywords

Comments

Row sums of A117436.
Binomial transform of A002436 (with interpolated zeros).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(x)*Sec(2*x) ))); // G. C. Greubel, May 31 2021
    
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x]Sec[2x],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Dec 13 2011 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(exp(x)/cos(2*x))) \\ Michel Marcus, Jun 01 2021
  • Sage
    [factorial(n)*( exp(x)*sec(2*x) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, May 31 2021
    

Formula

a(n) ~ n! * 2^(2*n+1) * (exp(Pi/4) + (-1)^n*exp(-Pi/4)) / Pi^(n+1). - Vaclav Kotesovec, Aug 04 2014
Showing 1-2 of 2 results.