cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117487 G.f.: 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5))^2.

Original entry on oeis.org

1, 2, 5, 10, 20, 36, 63, 104, 169, 264, 405, 604, 888, 1278, 1815, 2536, 3502, 4772, 6437, 8586, 11352, 14866, 19315, 24890, 31851, 40466, 51089, 64092, 79952, 99172, 122386, 150264, 183639, 223394, 270605, 326422, 392225, 469490, 559970, 665542, 788412
Offset: 1

Views

Author

Alford Arnold, Mar 22 2006

Keywords

Comments

Molien series for S_5 X S_5, cf. A001401.
Molien series for S_k X S_k approaches A000712 as k increases.
Column 5 of table A115994.
Note that a(5) is 20, the scalar product of (1 1 2 3 5) and (5 3 2 1 1 ). a(6) is 36, the scalar product of (1 1 2 3 5 7) and (7 5 3 2 1 1 ).

Crossrefs

Programs

  • Magma
    n:=5; G:=SymmetricGroup(n); H:=DirectProduct(G,G); MolienSeries(H); // N. J. A. Sloane
    
  • Maple
    # adapted from A115994 kmax := 120 : qmax := kmax/2 : g:=sum(t^k*q^(k^2)/product((1-q^j)^2, j=1..k), k=1..kmax): gser:=series(g, q=0, qmax): for n from 25 to qmax-1 do P :=coeff(gser, q^n) : printf("%a,",coeff(P, t^5)); od: # R. J. Mathar, Apr 07 2006
  • Mathematica
    CoefficientList[Series[1/(Product[(1-x^j), {j,5}])^2, {x,0,45}], x] (* G. C. Greubel, Jan 01 2020 *)
  • PARI
    my(x='x+O('x^45)); Vec( 1/(prod(j=1,5, 1-x^j))^2 ) \\ G. C. Greubel, Jan 01 2020
    
  • Sage
    def A117487_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(product(1-x^j for j in (1..5)))^2 ).list()
    A117487_list(45) # G. C. Greubel, Jan 01 2020

Extensions

More terms from R. J. Mathar, Apr 07 2006
Entry revised by N. J. A. Sloane, Mar 10 2007