A117487 G.f.: 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)*(1-x^5))^2.
1, 2, 5, 10, 20, 36, 63, 104, 169, 264, 405, 604, 888, 1278, 1815, 2536, 3502, 4772, 6437, 8586, 11352, 14866, 19315, 24890, 31851, 40466, 51089, 64092, 79952, 99172, 122386, 150264, 183639, 223394, 270605, 326422, 392225, 469490, 559970, 665542, 788412
Offset: 1
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2, 1, -2, -1, -2, 0, 2, 6, 2, -3, -6, -5, -2, 3, 12, 3, -2, -5, -6, -3, 2, 6, 2, 0, -2, -1, -2, 1, 2, -1).
Crossrefs
Programs
-
Magma
n:=5; G:=SymmetricGroup(n); H:=DirectProduct(G,G); MolienSeries(H); // N. J. A. Sloane
-
Maple
# adapted from A115994 kmax := 120 : qmax := kmax/2 : g:=sum(t^k*q^(k^2)/product((1-q^j)^2, j=1..k), k=1..kmax): gser:=series(g, q=0, qmax): for n from 25 to qmax-1 do P :=coeff(gser, q^n) : printf("%a,",coeff(P, t^5)); od: # R. J. Mathar, Apr 07 2006
-
Mathematica
CoefficientList[Series[1/(Product[(1-x^j), {j,5}])^2, {x,0,45}], x] (* G. C. Greubel, Jan 01 2020 *)
-
PARI
my(x='x+O('x^45)); Vec( 1/(prod(j=1,5, 1-x^j))^2 ) \\ G. C. Greubel, Jan 01 2020
-
Sage
def A117487_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 1/(product(1-x^j for j in (1..5)))^2 ).list() A117487_list(45) # G. C. Greubel, Jan 01 2020
Extensions
More terms from R. J. Mathar, Apr 07 2006
Entry revised by N. J. A. Sloane, Mar 10 2007
Comments