cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A117486 Expansion of 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))^2.

Original entry on oeis.org

1, 2, 5, 10, 20, 34, 59, 94, 149, 224, 334, 480, 685, 950, 1307, 1762, 2357, 3100, 4050, 5220, 6685, 8466, 10659, 13294, 16494, 20298, 24859, 30234, 36609, 44056, 52806, 62952, 74770, 88380, 104112, 122116, 142786, 166304, 193134, 223504, 257954, 296756, 340544
Offset: 0

Views

Author

Alford Arnold, Mar 22 2006

Keywords

Comments

Molien series for S_4 X S_4, cf. A001400.

Crossrefs

Column four of table A115994.

Programs

  • Magma
    n:=4; G:=SymmetricGroup(n); H:=DirectProduct(G,G); MolienSeries(H);
    
  • Mathematica
    CoefficientList[Series[1/((1-x)(1-x^2)(1-x^3)(1-x^4))^2,{x,0,50}],x] (* Harvey P. Dale, Jul 22 2012 *)
  • Maxima
    a(n):=floor(2*floor(-n/3)*cos(2*%pi*(n+1)/3)/81+(n+2)*cos(%pi*n/ 2)/128+(n+1)*(2835*(n^2+29*n+246)*(-1)^n+6*n^6+414*n^5+11556*n^4 +166944*n^3 +1320045*n^2+5489625*n+10008110)/ 17418240+1/2); /* Tani Akinari, Nov 14 2012 */
    
  • PARI
    Vec(1 / ((1 - x)^8*(1 + x)^4*(1 + x^2)^2*(1 + x + x^2)^2) + O(x^40)) \\ Colin Barker, Apr 07 2019

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))^2.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) - 4*a(n-5) + 4*a(n-6) + 4*a(n-7) + 2*a(n-8) - 10*a(n-10) + 2*a(n-12) + 4*a(n-13) + 4*a(n-14) - 4*a(n-15) - a(n-16) - 2*a(n-17) + a(n-18) + 2*a(n-19) - a(n-20) for n>19. - Colin Barker, Apr 07 2019

Extensions

Entry revised by N. J. A. Sloane, Mar 10 2007

A330643 a(n) is the number of partitions of n with Durfee square of size <= 5.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143, 12310, 14883, 17976, 21635, 26010, 31175, 37318, 44547, 53109, 63153, 74996, 88850, 105113, 124078, 146256, 172032, 202056, 236844
Offset: 0

Views

Author

Omar E. Pol, Dec 24 2019

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = Vec(sum(k=0, 5, x^(k^2)/prod(j=1, k, 1 - x^j)^2) + O(x*x^n)) \\ Andrew Howroyd, Dec 27 2024

Formula

a(n) = A000041(n), 0 <= n <= 35.
a(n) = A330642(n), 0 <= n <= 24.
a(n) = A330642(n) + A117487(n-24), n >= 25.
a(n) = n + A006918(n-3) + A117485(n) + A117486(n-16) + A117487(n-24), n >= 25.
G.f.: Sum_{k=0..5} x^(k^2)/(Product_{j=1..k} (1 - x^j))^2. - Andrew Howroyd, Dec 27 2024

A160647 Self-convolution of sequence A001402.

Original entry on oeis.org

1, 2, 5, 10, 20, 36, 65, 108, 179, 284, 445, 676, 1017, 1492, 2168, 3094, 4372, 6088, 8406, 11462, 15509, 20770, 27614, 36390, 47646, 61898, 79939, 102538, 130808, 165864, 209272, 262598, 328008, 407700, 504607, 621760, 763123, 932788, 1136047
Offset: 1

Views

Author

Alford Arnold, May 27 2009

Keywords

Examples

			a(8) = 108 because the eighth antidiagonal of the associated array is 14 11 14 15 15 14 11 14 and sums to 108.
		

Crossrefs

Cf. A117566.
Sixth in a list of sequences related to numeric partitions; earlier sequences are A000027, A006918, A117485, A117486, and A117487.

Programs

  • Maple
    A160647 := proc(n) coeftayl( convert(1/mul((1-x^j)^2,j=1..6),parfrac,x),x=0,n) ; end: seq(A160647(n),n=0..45) ; # R. J. Mathar, Jun 16 2009

Extensions

More terms from R. J. Mathar, Jun 16 2009

A364842 Table read by antidiagonals: row n gives the Euler transform of the sequence (2,...,2,0,0,...) that contains n 2s followed by 0s.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 5, 4, 1, 2, 5, 8, 5, 1, 2, 5, 10, 14, 6, 1, 2, 5, 10, 18, 20, 7, 1, 2, 5, 10, 20, 30, 30, 8, 1, 2, 5, 10, 20, 34, 49, 40, 9, 1, 2, 5, 10, 20, 36, 59, 74, 55, 10, 1, 2, 5, 10, 20, 36, 63, 94, 110, 70, 11, 1, 2, 5, 10, 20, 36, 65, 104, 149, 158, 91, 12
Offset: 1

Views

Author

Peter Kagey, Nov 09 2023

Keywords

Examples

			Table begins:
  | 0 1 2  3  4  5  6   7   8   9  10
--+----------------------------------
1 | 1 2 3  4  5  6  7   8   9  10  11
2 | 1 2 5  8 14 20 30  40  55  70  91
3 | 1 2 5 10 18 30 49  74 110 158 221
4 | 1 2 5 10 20 34 59  94 149 224 334
5 | 1 2 5 10 20 36 63 104 169 264 405
6 | 1 2 5 10 20 36 65 108 179 284 445
7 | 1 2 5 10 20 36 65 110 183 294 465
8 | 1 2 5 10 20 36 65 110 185 298 475
9 | 1 2 5 10 20 36 65 110 185 300 479
		

Crossrefs

Cf. A000027 (row 1), A006918 (row 2), A117485 (row 3), A117486 ( row 4), A117487 (row 5), A160647 (row 6), A000712 (main diagonal).
Analogous for initial 1s sequence A008284.
Cf. A115994.

Programs

  • Mathematica
    Seed[i_, n_] := ConstantArray[2, i]~Join~ConstantArray[0, n - i];
    A364842Table[n_] := Table[Seed[i, n] // EulerTransform, {i, 1, n}]
    (*EulerTransform is defined in A005195*)
Showing 1-4 of 4 results.