cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117490 Number of primes between n and n^2 (with n and n^2 excluded).

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 11, 14, 18, 21, 25, 29, 33, 38, 42, 48, 54, 59, 64, 70, 77, 84, 90, 96, 105, 113, 120, 128, 136, 144, 151, 161, 170, 180, 189, 199, 207, 216, 228, 239, 250, 261, 269, 281, 292, 305, 314, 327, 342, 352, 363, 378, 393, 405, 418, 429, 441, 458, 470
Offset: 1

Views

Author

Keywords

Comments

A famous Japanese mathematics book states that this sequence is nonzero (for n>1) if the Riemann Hypothesis is true, but this statement seems to be false.
If the n-th prime is denoted by p(n) then a(j) = number of nonzero values of floor (j^2/p(n)), over all n >= 1, (derived from A165974). - Christopher Hunt Gribble, Oct 03 2009

Examples

			For n = 5: between 5+1 = 6 and 5^2-1 = 24 there are the following six primes: 7, 11, 13, 17, 19, 23.
		

Crossrefs

Programs

  • Maple
    P:=proc(n) local i,j,np; for i from 1 by 1 to n do np:=0; for j from i+1 by 1 to i^2-1 do if isprime(j) then np:=np+1; fi; od; print(np); od; end: P(100);
  • Mathematica
    a[n_] := PrimePi[n^2 - 1] - PrimePi[n]; Array[a, 59] (* Robert G. Wilson v, Apr 06 2006 *)

Formula

a(n) = pi(n^2) - pi(n), cf. A000720.
a(n) = A038107(n) - A000720(n) = A073882(n) - A010051(n). - Reinhard Zumkeller, May 20 2010