cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117504 Prime at which the cumulative sum in A117503 is prime.

Original entry on oeis.org

37, 137, 151, 173, 409, 467, 503, 677, 937, 1091, 1153, 1229, 1303, 1409, 1453, 1471, 1531, 2137, 2221, 2251, 2393, 2503, 2593, 2633, 2671, 2797, 2837, 3001, 3023, 3089, 3163
Offset: 1

Views

Author

Enoch Haga, Mar 25 2006

Keywords

Examples

			In a(1)=37, the cumulative sum of primes 1-12 in A117503 has risen to 613, a prime -- 37 being the 12th prime to be multiplied by Pi, with integer of result added to previous results.
		

Crossrefs

Cf. A117503.

Programs

  • Maple
    Digits := 30 ; A117504 := proc(nmax) local a,pisum,p ; a := [] ; pisum := 0 ; p :=1 ; while nops(a) <=nmax do while true do pisum := pisum+floor(Pi*ithprime(p)) ; p := p+1 ; if isprime(pisum) then a := [op(a),ithprime(p-1)] ; break ; fi ; od : od : RETURN(a) ; end: a := A117504(30) ; # R. J. Mathar
  • Mathematica
    Prime[#]&/@Flatten[Position[Accumulate[Table[Floor[Pi p],{p,Prime[Range[500]]}]],?PrimeQ]] (* _Harvey P. Dale, Jul 19 2023 *)
  • UBASIC
    10 Ct=1
    20 B=nxtprm(B)
    30 C=int(pi(B))
    40 D=D+C
    41 print Ct,B,C,D
    50 if D=prmdiv(D) then print D:stop
    55 Ct=Ct+1
    60 goto 20

Formula

Multiply consecutive primes by Pi, truncate to integer, sum until a prime sum is reached.

Extensions

Corrected by R. J. Mathar, Oct 26 2006