A117504 Prime at which the cumulative sum in A117503 is prime.
37, 137, 151, 173, 409, 467, 503, 677, 937, 1091, 1153, 1229, 1303, 1409, 1453, 1471, 1531, 2137, 2221, 2251, 2393, 2503, 2593, 2633, 2671, 2797, 2837, 3001, 3023, 3089, 3163
Offset: 1
Examples
In a(1)=37, the cumulative sum of primes 1-12 in A117503 has risen to 613, a prime -- 37 being the 12th prime to be multiplied by Pi, with integer of result added to previous results.
Crossrefs
Cf. A117503.
Programs
-
Maple
Digits := 30 ; A117504 := proc(nmax) local a,pisum,p ; a := [] ; pisum := 0 ; p :=1 ; while nops(a) <=nmax do while true do pisum := pisum+floor(Pi*ithprime(p)) ; p := p+1 ; if isprime(pisum) then a := [op(a),ithprime(p-1)] ; break ; fi ; od : od : RETURN(a) ; end: a := A117504(30) ; # R. J. Mathar
-
Mathematica
Prime[#]&/@Flatten[Position[Accumulate[Table[Floor[Pi p],{p,Prime[Range[500]]}]],?PrimeQ]] (* _Harvey P. Dale, Jul 19 2023 *)
-
UBASIC
10 Ct=1 20 B=nxtprm(B) 30 C=int(pi(B)) 40 D=D+C 41 print Ct,B,C,D 50 if D=prmdiv(D) then print D:stop 55 Ct=Ct+1 60 goto 20
Formula
Multiply consecutive primes by Pi, truncate to integer, sum until a prime sum is reached.
Extensions
Corrected by R. J. Mathar, Oct 26 2006