cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117525 Total sum of parts of multiplicity 2 in all partitions of n.

Original entry on oeis.org

0, 0, 1, 0, 3, 3, 7, 9, 20, 22, 44, 56, 90, 119, 186, 236, 355, 461, 651, 848, 1177, 1506, 2050, 2626, 3482, 4443, 5823, 7353, 9524, 11983, 15307, 19163, 24277, 30174, 37920, 46925, 58463, 72006, 89155, 109209, 134418, 163973, 200605, 243700, 296696, 358862
Offset: 0

Views

Author

Vladeta Jovovic, Apr 26 2006

Keywords

Comments

For m > 0, column m of A222730 is asymptotic to sqrt(3) * (2*m+1) * exp(Pi*sqrt(2*n/3)) / (2 * m^2 * (m+1)^2 * Pi^2) ~ 6 * (2*m+1) * n * p(n) / (m^2 * (m+1)^2 * Pi^2), where p(n) is the partition function A000041(n). - Vaclav Kotesovec, May 29 2018

Examples

			a(5) = 3 because the partitions of 5 that have parts with multiplicity 2 are [3,1,1] and [2,2,1] and the sum of those parts is 1+2 = 3.
		

Crossrefs

Cf. A103628.
Column k=2 of A222730. - Alois P. Heinz, Mar 03 2013

Programs

  • Maple
    g:=(x^2/(1-x^2)^2-x^3/(1-x^3)^2)/Product(1-x^i,i=1..60): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=0..50); # Emeric Deutsch, May 13 2006
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
          add((l->`if`(j=2, [l[1], l[2]+l[1]*i], l))(b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 03 2013
  • Mathematica
    b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[4]]; a[0] = a[1] = 0; Table[a[n], {n, 0, 50}]   (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)

Formula

G.f. for total sum of parts of multiplicity m in all partitions of n is (x^m/(1-x^m)^2-x^(m+1)/(1-x^(m+1))^2)/Product(1-x^i,i=1..infinity).
a(n) ~ 5 * sqrt(3) * exp(Pi*sqrt(2*n/3)) / (72 * Pi^2). - Vaclav Kotesovec, May 29 2018

Extensions

More terms from Emeric Deutsch, May 13 2006