A117536 Nearest integer to locations of increasingly large peaks of abs(zeta(0.5 + i*2*(Pi/log(2))*t)) for increasing real t.
0, 1, 2, 3, 4, 5, 7, 10, 12, 19, 22, 27, 31, 41, 53, 72, 99, 118, 130, 152, 171, 217, 224, 270, 342, 422, 441, 494, 742, 764, 935, 954, 1012, 1106, 1178, 1236, 1395, 1448, 1578, 2460, 2684, 3395, 5585, 6079, 7033, 8269, 8539, 11664, 14348, 16808, 28742, 34691
Offset: 0
Examples
The function f(m) = |zeta(1/2 + i*2*(Pi/log(2))*m)| has a local maximum f(m') ~ 3.66 at m' ~ 5.0345, which corresponds to a(5)=round(m)=5. The peak at f(6.035) ~ 2.9 is smaller, and after two more smaller local maxima, there is a larger peak at f(6.9567) ~ 4.167, whence a(6)=7.
References
- H. M. Edwards, Riemann's Zeta-Function, Academic Press, 1974.
- K. Ramachandra, On the Mean-Value and Omega-Theorems for the Riemann Zeta-Function, Springer-Verlag, 1995.
- E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, second revised (Heath-Brown) edition, Oxford University Press, 1986.
Links
- Andrew Odlyzko, Tables of the zeros of the Riemann zeta function.
- Wikipedia, Z function
- Index entries for zeta function.
Programs
-
PARI
{my(c=I/log(2)*2*Pi,f(n)=abs(zeta(.5+n*c)), m=0, find(x,d,e=1e-6)=my(y=f(x)); while(y<(y=f(x+=d)) || e
M. F. Hasler, Jan 26 2012
Extensions
Extended by T. D. Noe, Apr 19 2010
Comments