cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A117538 Locations of the increasing peak values of the integral of the absolute value of the Riemann zeta function between successive zeros on the critical line. This can also be defined in terms of the Z function; if t and s are successive zeros of a renormalized Z function, z(x) = Z(2 Pi x/log(2)), then take the integral between t and s of |z(x)|. For each successively higher value of this integral, the corresponding term of the integer sequence is r = (t+s)/2 rounded to the nearest integer.

Original entry on oeis.org

2, 5, 7, 12, 19, 31, 41, 53, 72, 130, 171, 224, 270, 764, 954, 1178, 1395, 1578, 2684, 3395, 7033, 8269, 8539, 14348, 16808, 36269, 58973
Offset: 0

Views

Author

Gene Ward Smith, Mar 27 2006

Keywords

Comments

The fractional parts of the numbers r = (t+s)/2 above are very unevenly distributed. For all of the values in the table, the integers are in fact the unique integers contained in the interval of zeros [t, s] of z(x). An interesting challenge to anyone wishing to do computations related to the zeta function would be to find the first counterexample, where in fact the peak value interval did not contain the corresponding integer. Perhaps even more than the peak values of the zeta function themselves, these integrals are extremely closely related to relatively good equal divisions of the octave in music theory.

References

  • Edwards, H. M., Riemann's Zeta-Function, Academic Press, 1974
  • Titchmarsh, E. C., The Theory of the Riemann Zeta-Function, second revised (Heath-Brown) edition, Oxford University Press, 1986
  • Paris, R. B. and Kaminski, D., Asymptotics and Mellin-Barnes Integrals, Cambridge University Press, 2001

Crossrefs

Extensions

Extended by T. D. Noe, Apr 21 2010

A117536 Nearest integer to locations of increasingly large peaks of abs(zeta(0.5 + i*2*(Pi/log(2))*t)) for increasing real t.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 10, 12, 19, 22, 27, 31, 41, 53, 72, 99, 118, 130, 152, 171, 217, 224, 270, 342, 422, 441, 494, 742, 764, 935, 954, 1012, 1106, 1178, 1236, 1395, 1448, 1578, 2460, 2684, 3395, 5585, 6079, 7033, 8269, 8539, 11664, 14348, 16808, 28742, 34691
Offset: 0

Views

Author

Gene Ward Smith, Mar 27 2006

Keywords

Comments

These correspond to increasing peaks of the absolute value of the Riemann zeta function along the critical line. If Z'(s)=0 is a positive zero of the derivative of Z, then |Z(s)| is the peak value.
The fractional parts of these values are not randomly distributed; r = log(2) * s(n) / (2*Pi) shows a very strong tendency to be near an integer.
It would be interesting to have theorems on the distribution of the fractional part of the "r" above, for which the Riemann hypothesis would surely be needed. It would be particularly interesting to know if the absolute value's fractional part is constrained to be less than some bound, such as 0.25. This computation could be pushed much farther by someone using a better algorithm, for instance the Riemann-Siegel formula and better computing resources. The computations were done using Maple's accurate but very slow zeta function evaluation. They are correct as far as they go, but do not go very far. The terms of the sequence have an interpretation in terms of music theory; the terms which appear in it, 12, 19, 22 and so forth, are equal divisions of the octave which do relatively well approximating intervals given by rational numbers with small numerators and denominators.
This sequence was extended by examining the peaks of |zeta(0.5+xi)| between each the first million zeros of the zeta function. These record peaks occur between zeros that are relatively far apart. The fractional part of r decreases as the magnitude of r increases. - T. D. Noe, Apr 19 2010

Examples

			The function f(m) = |zeta(1/2 + i*2*(Pi/log(2))*m)| has a local maximum f(m') ~ 3.66 at m' ~ 5.0345, which corresponds to a(5)=round(m)=5. The peak at f(6.035) ~ 2.9 is smaller, and after two more smaller local maxima, there is a larger peak at f(6.9567) ~ 4.167, whence a(6)=7.
		

References

  • H. M. Edwards, Riemann's Zeta-Function, Academic Press, 1974.
  • K. Ramachandra, On the Mean-Value and Omega-Theorems for the Riemann Zeta-Function, Springer-Verlag, 1995.
  • E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, second revised (Heath-Brown) edition, Oxford University Press, 1986.

Crossrefs

Programs

  • PARI
    {my(c=I/log(2)*2*Pi,f(n)=abs(zeta(.5+n*c)), m=0,
    find(x,d,e=1e-6)=my(y=f(x)); while(y<(y=f(x+=d)) || eM. F. Hasler, Jan 26 2012

Extensions

Extended by T. D. Noe, Apr 19 2010

A117539 Integrals of the absolute value of the Z function between successive zeros greater than or equal to the integral corresponding to 12. If we define the normalized Z function by z(x) = Z(2*Pi*x/log(2)), then the 33rd and 34th zeros are approximately 11.82 and 12.25. Integrating |z(x)| between these values gives a quantity I and the above sequence is defined as the midpoints of all successive zeros of z(x) such that the integral of |z(x)| is greater than or equal to I.

Original entry on oeis.org

12, 19, 31, 41, 46, 53, 58, 65, 72, 77, 87, 94, 99, 103, 111
Offset: 0

Views

Author

Gene Ward Smith, Mar 27 2006

Keywords

Comments

The reason for the choice of 12 as a starting point is from musical practice; 12 is the standard equal division of the octave of Western music. The subsequent values where this integral is greater than it is for 12 are also equal divisions. While all the values tabulated are such that the integer of the integer sequence is actually contained in the interval between two successive zeros, it must eventually happen that a counterexample would be found. Another interesting question is the density of this sequence; it is not clear if it is increasing in density or not.

References

  • Edwards, H. M., Riemann's Zeta-Function, Academic Press, 1974
  • Titchmarsh, E. C., The Theory of the Riemann Zeta-Function, second revised (Heath-Brown) edition, Oxford University Press, 1986

Crossrefs

Showing 1-3 of 3 results.